Do you want to publish a course? Click here

Improved Network Decompositions using Small Messages with Applications on MIS, Neighborhood Covers, and Beyond

84   0   0.0 ( 0 )
 Added by Julian Portmann
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Network decompositions, as introduced by Awerbuch, Luby, Goldberg, and Plotkin [FOCS89], are one of the key algorithmic tools in distributed graph algorithms. We present an improved deterministic distributed algorithm for constructing network decompositions of power graphs using small messages, which improves upon the algorithm of Ghaffari and Kuhn [DISC18]. In addition, we provide a randomized distributed network decomposition algorithm, based on our deterministic algorithm, with failure probability exponentially small in the input size that works with small messages as well. Compared to the previous algorithm of Elkin and Neiman [PODC16], our algorithm achieves a better success probability at the expense of its round complexity, while giving a network decomposition of the same quality. As a consequence of the randomized algorithm for network decomposition, we get a faster randomized algorithm for computing a Maximal Independent Set, improving on a result of Ghaffari [SODA19]. Other implications of our improved deterministic network decomposition algorithm are: a faster deterministic distributed algorithms for constructing spanners and approximations of distributed set cover, improving results of Ghaffari, and Kuhn [DISC18] and Deurer, Kuhn, and Maus [PODC19]; and faster a deterministic distributed algorithm for constructing neighborhood covers, resolving an open question of Elkin [SODA04].



rate research

Read More

A rich line of work has been addressing the computational complexity of locally checkable labelings (LCLs), illustrating the landscape of possible complexities. In this paper, we study the landscape of LCL complexities under bandwidth restrictions. Our main results are twofold. First, we show that on trees, the CONGEST complexity of an LCL problem is asymptotically equal to its complexity in the LOCAL model. An analog statement for general (non-LCL) problems is known to be false. Second, we show that for general graphs this equivalence does not hold, by providing an LCL problem for which we show that it can be solved in $O(log n)$ rounds in the LOCAL model, but requires $tilde{Omega}(n^{1/2})$ rounds in the CONGEST model.
Network decomposition is a central tool in distributed graph algorithms. We present two improvements on the state of the art for network decomposition, which thus lead to improvements in the (deterministic and randomized) complexity of several well-studied graph problems. - We provide a deterministic distributed network decomposition algorithm with $O(log^5 n)$ round complexity, using $O(log n)$-bit messages. This improves on the $O(log^7 n)$-round algorithm of Rozhov{n} and Ghaffari [STOC20], which used large messages, and their $O(log^8 n)$-round algorithm with $O(log n)$-bit messages. This directly leads to similar improvements for a wide range of deterministic and randomized distributed algorithms, whose solution relies on network decomposition, including the general distributed derandomization of Ghaffari, Kuhn, and Harris [FOCS18]. - One drawback of the algorithm of Rozhov{n} and Ghaffari, in the $mathsf{CONGEST}$ model, was its dependence on the length of the identifiers. Because of this, for instance, the algorithm could not be used in the shattering framework in the $mathsf{CONGEST}$ model. Thus, the state of the art randomized complexity of several problems in this model remained with an additive $2^{O(sqrt{loglog n})}$ term, which was a clear leftover of the older network decomposition complexity [Panconesi and Srinivasan STOC92]. We present a modified version that remedies this, constructing a decomposition whose quality does not depend on the identifiers, and thus improves the randomized round complexity for various problems.
We present $O(loglog n)$ round scalable Massively Parallel Computation algorithms for maximal independent set and maximal matching, in trees and more generally graphs of bounded arboricity, as well as for constant coloring trees. Following the standards, by a scalable MPC algorithm, we mean that these algorithms can work on machines that have capacity/memory as small as $n^{delta}$ for any positive constant $delta<1$. Our results improve over the $O(log^2log n)$ round algorithms of Behnezhad et al. [PODC19]. Moreover, our matching algorithm is presumably optimal as its bound matches an $Omega(loglog n)$ conditional lower bound of Ghaffari, Kuhn, and Uitto [FOCS19].
We present a randomized distributed algorithm that computes a $Delta$-coloring in any non-complete graph with maximum degree $Delta geq 4$ in $O(log Delta) + 2^{O(sqrt{loglog n})}$ rounds, as well as a randomized algorithm that computes a $Delta$-coloring in $O((log log n)^2)$ rounds when $Delta in [3, O(1)]$. Both these algorithms improve on an $O(log^3 n/log Delta)$-round algorithm of Panconesi and Srinivasan~[STOC1993], which has remained the state of the art for the past 25 years. Moreover, the latter algorithm gets (exponentially) closer to an $Omega(loglog n)$ round lower bound of Brandt et al.~[STOC16].
We present two new combinatorial tools for the design of parameterized algorithms. The first is a simple linear time randomized algorithm that given as input a $d$-degenerate graph $G$ and an integer $k$, outputs an independent set $Y$, such that for every independent set $X$ in $G$ of size at most $k$, the probability that $X$ is a subset of $Y$ is at least $left({(d+1)k choose k} cdot k(d+1)right)^{-1}$.The second is a new (deterministic) polynomial time graph sparsification procedure that given a graph $G$, a set $T = {{s_1, t_1}, {s_2, t_2}, ldots, {s_ell, t_ell}}$ of terminal pairs and an integer $k$, returns an induced subgraph $G^star$ of $G$ that maintains all the inclusion minimal multicuts of $G$ of size at most $k$, and does not contain any $(k+2)$-vertex connected set of size $2^{{cal O}(k)}$. In particular, $G^star$ excludes a clique of size $2^{{cal O}(k)}$ as a topological minor. Put together, our new tools yield new randomized fixed parameter tractable (FPT) algorithms for Stable $s$-$t$ Separator, Stable Odd Cycle Transversal and Stable Multicut on general graphs, and for Stable Directed Feedback Vertex Set on $d$-degenerate graphs, resolving two problems left open by Marx et al. [ACM Transactions on Algorithms, 2013]. All of our algorithms can be derandomized at the cost of a small overhead in the running time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا