Do you want to publish a course? Click here

A global view on star formation: The GLOSTAR Galactic plane survey IV. Radio continuum detections of young stellar objects in the Galactic Centre region

190   0   0.0 ( 0 )
 Added by Hans Nguyen
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Central Molecular Zone (CMZ), a $sim$200 pc sized region around the Galactic Centre, is peculiar in that it shows a star formation rate (SFR) that is suppressed with respect to the available dense gas. To study the SFR in the CMZ, young stellar objects (YSOs) can be investigated. Here we present radio observations of 334 2.2 $mu$m infrared sources that have been identified as YSO candidates. Our goal is to investigate the presence of centimetre wavelength radio continuum counterparts to this sample of YSO candidates which we use to constrain the current SFR in the CMZ. As part of the GLOSTAR survey, D-configuration VLA data was obtained for the Galactic Centre, covering -2$^{circ}<l<$2$^{circ}$ and -1$^{circ}<b<$1$^{circ}$, with a frequency coverage of 4-8 GHz. We matched YSOs with radio continuum sources based on selection criteria and classified these radio sources as potential HII regions and determined their physical properties. Of the 334 YSO candidates, we found 35 with radio continuum counterparts. We find that 94 YSOs are associated with dense dust condensations identified in the 870 $mu$m ATLASGAL survey, of which 14 have a GLOSTAR counterpart. Of the 35 YSOs with radio counterparts, 11 are confirmed as HII regions, based on their spectral indices and the literature. We estimated their Lyman continuum photon flux in order to estimate the mass of the ionising star. Combining these with known sources, the present-day SFR in the CMZ is calculated to be $sim$0.068 M$_{odot}$ yr$^{-1}$, which is $sim$6.8$%$ of the Galactic SFR. Candidate YSOs that lack radio counterparts may not have yet evolved to the stage of exhibiting an HII region or, conversely, are older and have dispersed their natal clouds. Since many lack dust emission, the latter is more likely. Our SFR estimate in the CMZ is in agreement with previous estimates in the literature.



rate research

Read More

The Cygnus X complex is covered by the Global View of Star Formation in the Milky Way (GLOSTAR) survey, an unbiased radio-wavelength Galactic plane survey, in 4--8 GHz continuum radiation and several spectral lines. The GLOSTAR survey observed the 6.7~GHz transition of methanol (CH$_3$OH), an exclusive tracer of high-mass young stellar objects. Using the Very Large Array in both the B and D configurations, we observed an area in Cygnus~X of $7^{rm o}times3^{rm o}$ in size and simultaneously covered the methanol line and the continuum, allowing cross-registration. We detected thirteen sources with Class~II methanol maser emission and one source with methanol absorption. Two methanol maser sources are newly detected; in addition, we found four new velocity components associated with known masers. Five masers are concentrated in the DR21 ridge and W75N. We determined the characteristics of the detected masers and investigated the association with infrared, (sub)millimeter, and radio continuum emission. All maser sources are associated with (sub)millimeter dust continuum emission, which is consistent with the picture of masers tracing regions in an active stage of star formation. On the other hand, only five masers ($38pm17%$) have radio continuum counterparts seen with GLOSTAR within $sim$1$$, testifying to their youth. Comparing the distributions of the bolometric luminosity and the luminosity-to-mass ratio of cores that host 6.7~GHz methanol masers with those of the full core population, we identified lower limits $L_{rm Bol}sim200~L_odot$ and $L_{rm Bol}/M_{rm core}sim1~L_odot~M^{-1}_odot$ for a dust source to host maser emission.
Context. The properties of the population of Galactic supernova remnants (SNRs) are essential to our understanding of the dynamics of the interstellar medium (ISM) in the Milky Way. However, the completeness of the catalog of Galactic SNRs is expected to be only ${sim}30%$, with on order 700 SNRs yet to be detected. Deep interferometric radio continuum surveys of the Galactic plane help in rectifying this apparent deficiency by identifying low surface brightness SNRs and compact SNRs that have not been detected in previous surveys. However, SNRs are routinely confused with H II regions, which can have similar radio morphologies. Radio spectral index, polarization, and emission at mid-infrared (MIR) wavelengths can help distinguish between SNRs and H II regions. Aims. We aim to identify SNR candidates using continuum images from the Karl G. Jansky Very Large Array GLObal view of the STAR formation in the Milky Way (GLOSTAR) survey. Methods. GLOSTAR is a C-band (4--8 GHz) radio wavelength survey of the Galactic plane covering $358^{circ} leq l leq 60^{circ}, |b| leq 1^{circ}$. The continuum images from this survey, which resulted from observations with the most compact configuration of the array, have an angular resolution of $18$. We searched for SNRs in these images to identify known SNRs, previously identified SNR candidates, and new SNR candidates. We study these objects in MIR surveys and the GLOSTAR polarization data to classify their emission as thermal or nonthermal. Results. We identify 157 SNR candidates, of which 80 are new. Polarization measurements provide evidence of nonthermal emission from 9 of these candidates. We find that two previously identified candidates are filaments. We also detect emission from 91 of the 94 known SNRs in the survey region. Four of these are reclassified as H II regions following detection in MIR surveys. (Abridged)
Surveys of the Milky Way at various wavelengths have changed our view of star formation in our Galaxy considerably in recent years. In this paper we give an overview of the GLOSTAR survey, a new survey covering large parts (145 square degrees) of the northern Galactic plane using the Karl G. Jansky Very Large Array (JVLA) in the frequency range 4-8 GHz and the Effelsberg 100-m telescope. This provides for the first time a radio survey covering all angular scales down to 1.5 arcsecond, similar to complementary near-IR and mid-IR galactic plane surveys. We outline the main goals of the survey and give a detailed description of the observations and the data reduction strategy. In our observations we covered the radio continuum in full polarization, as well as the 6.7 GHz methanol maser line, the 4.8~GHz formaldehyde line, and seven radio recombination lines. The observations were conducted in the most compact D configuration of the VLA and in the more extended B configuration. This yielded spatial resolutions of 18 and 1.5 for the two configurations, respectively. We also combined the D configuration images with the Effelsberg 100-m data to provide zero spacing information, and we jointly imaged the D- and B-configuration data for optimal sensitivity of the intermediate spatial ranges. Here we show selected results for the first part of the survey, covering the range of 28 deg <l<36 deg and |b|< 1 deg, including the full low-resolution continuum image, examples of high-resolution images of selected sources, and the first results from the spectral line data.
Studies of the Galactic Centre suggest that in-situ star formation may have given rise to the observed stellar population near the central supermassive black hole (SMBH). Direct evidence for a recent starburst is provided by the currently observed young stellar disc (2-7 Myr) in the central 0.5 pc of the Galaxy. This result suggests that star formation in galactic nuclei may occur close to the SMBH and produce initially flattened stellar discs. Here we explore the possible build-up and evolution of nuclear stellar clusters near SMBHs through in-situ star formation producing stellar discs similar to those observed in the Galactic Centre and other nuclei. We make use of N-body simulations to model the evolution of multiple young stellar discs and explore the potential observable signatures imprinted by such processes. Each of the five simulated discs is evolved for 100 Myr before the next one is introduced in the system. We find that populations born at different epochs show different morphologies and kinematics. Older and presumably more metal poor populations are more relaxed and extended, while younger populations show a larger amount of rotation and flattening. We conclude that star formation in central discs can reproduce the observed properties of multiple stellar populations in galactic nuclei differing in age, metallicity and kinematic properties.
We present a method to derive positions of molecular clouds along the lines of sight from a quantitative comparison between 2.6 mm CO emission lines and 18 cm OH absorption lines, and apply it to the central kiloparsecs of the Milky Way. With some simple but justifiable assumptions, we derive a face-on distribution of the CO brightness and corresponding radial velocity in the Galactic centre without any help of kinematical models. The derived face-on distribution of the gas is elongated and inclined so that the Galactic-eastern (positive longitude) side is closer to us. The gas distribution is dominated by a barlike central condensation, whose apparent size is 500x200 pc. A ridge feature is seen to stretch from one end of the central condensation, though its elongated morphology might be artificial. The velocity field shows clear signs of noncircular motion in the central condensation. The `expanding molecular ring feature corresponds to the peripheral region surrounding the central condensation with the Galactic-eastern end being closer to us. These characteristics agree with a picture in which the kinematics of the gas in the central kiloparsec of the Galaxy is under a strong influence of a barred potential. The face-on distribution of the in situ pressure of the molecular gas is derived from the CO multiline analysis. The derived pressure is found to be highest in the central 100 pc. In this region, the gas is accumulating and is forming stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا