Do you want to publish a course? Click here

A global view on star formation: The GLOSTAR Galactic Plane Survey. I. Overview and first results for the Galactic longitude range 28{deg} < l < 36{deg}

150   0   0.0 ( 0 )
 Added by Andreas Brunthaler
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Surveys of the Milky Way at various wavelengths have changed our view of star formation in our Galaxy considerably in recent years. In this paper we give an overview of the GLOSTAR survey, a new survey covering large parts (145 square degrees) of the northern Galactic plane using the Karl G. Jansky Very Large Array (JVLA) in the frequency range 4-8 GHz and the Effelsberg 100-m telescope. This provides for the first time a radio survey covering all angular scales down to 1.5 arcsecond, similar to complementary near-IR and mid-IR galactic plane surveys. We outline the main goals of the survey and give a detailed description of the observations and the data reduction strategy. In our observations we covered the radio continuum in full polarization, as well as the 6.7 GHz methanol maser line, the 4.8~GHz formaldehyde line, and seven radio recombination lines. The observations were conducted in the most compact D configuration of the VLA and in the more extended B configuration. This yielded spatial resolutions of 18 and 1.5 for the two configurations, respectively. We also combined the D configuration images with the Effelsberg 100-m data to provide zero spacing information, and we jointly imaged the D- and B-configuration data for optimal sensitivity of the intermediate spatial ranges. Here we show selected results for the first part of the survey, covering the range of 28 deg <l<36 deg and |b|< 1 deg, including the full low-resolution continuum image, examples of high-resolution images of selected sources, and the first results from the spectral line data.



rate research

Read More

Context. The properties of the population of Galactic supernova remnants (SNRs) are essential to our understanding of the dynamics of the interstellar medium (ISM) in the Milky Way. However, the completeness of the catalog of Galactic SNRs is expected to be only ${sim}30%$, with on order 700 SNRs yet to be detected. Deep interferometric radio continuum surveys of the Galactic plane help in rectifying this apparent deficiency by identifying low surface brightness SNRs and compact SNRs that have not been detected in previous surveys. However, SNRs are routinely confused with H II regions, which can have similar radio morphologies. Radio spectral index, polarization, and emission at mid-infrared (MIR) wavelengths can help distinguish between SNRs and H II regions. Aims. We aim to identify SNR candidates using continuum images from the Karl G. Jansky Very Large Array GLObal view of the STAR formation in the Milky Way (GLOSTAR) survey. Methods. GLOSTAR is a C-band (4--8 GHz) radio wavelength survey of the Galactic plane covering $358^{circ} leq l leq 60^{circ}, |b| leq 1^{circ}$. The continuum images from this survey, which resulted from observations with the most compact configuration of the array, have an angular resolution of $18$. We searched for SNRs in these images to identify known SNRs, previously identified SNR candidates, and new SNR candidates. We study these objects in MIR surveys and the GLOSTAR polarization data to classify their emission as thermal or nonthermal. Results. We identify 157 SNR candidates, of which 80 are new. Polarization measurements provide evidence of nonthermal emission from 9 of these candidates. We find that two previously identified candidates are filaments. We also detect emission from 91 of the 94 known SNRs in the survey region. Four of these are reclassified as H II regions following detection in MIR surveys. (Abridged)
We present the Forgotten Quadrant Survey (FQS), an ESO large project that used the 12m antenna of the Arizona Radio Observatory to map the Galactic Plane in the range 220deg$<l<$240deg and -2.5deg$<b<$0deg, both in $^{12}$CO(1-0) and $^{13}$CO(1-0), at a spectral resolution of 0.65 km s$^{-1}$ and 0.26 km s$^{-1}$. Our dataset allows us to easily identify how the molecular dense gas is organised at different spatial scales: from the giant clouds with their denser filamentary networks, down to the clumps and cores that host the newborn stars and to obtain reliable estimates of their key physical parameters. We present the first release of the FQS data and discuss their quality. Spectra with 0.65 km s$^{-1}$ velocity channels have a noise ranging from 0.8 K to 1.3 K for $^{12}$CO(1-0) and from 0.3 K to 0.6 K for $^{13}$CO(1-0). In this paper, we used the $^{12}$CO(1-0) spectral cubes to produce a catalogue of 263 molecular clouds. This is the first selfconsistent, statistical catalogue of molecular clouds of the outer Galaxy, obtained with a subarcminute spatial resolution and therefore able to detect not only the classical giant molecular clouds, but also the small clouds and to resolve the cloud structure at the subparsec scale up to a distance of a few kpc. We found two classes of objects: structures with size above a few parsecs that are typical molecular clouds and may be self-gravitating, and subparsec structures that cannot be in gravitational equilibrium and are likely transient or confined by external pressure. We used the ratio between the Herschel H$_2$ column density and the integrated intensity of the CO lines to calculate the CO conversion factor and we found mean values of (3.3$pm$1.4)$times 10^{20}$ cm$^{-2}$(K km s$^{-1})^{-1}$ and (1.2$pm$0.4)$times 10^{21}$ cm$^{-2}$(K km s$^{-1})^{-1}$, for $^{12}$CO(1-0) and $^{13}$CO(1-0), respectively.
The Cygnus X complex is covered by the Global View of Star Formation in the Milky Way (GLOSTAR) survey, an unbiased radio-wavelength Galactic plane survey, in 4--8 GHz continuum radiation and several spectral lines. The GLOSTAR survey observed the 6.7~GHz transition of methanol (CH$_3$OH), an exclusive tracer of high-mass young stellar objects. Using the Very Large Array in both the B and D configurations, we observed an area in Cygnus~X of $7^{rm o}times3^{rm o}$ in size and simultaneously covered the methanol line and the continuum, allowing cross-registration. We detected thirteen sources with Class~II methanol maser emission and one source with methanol absorption. Two methanol maser sources are newly detected; in addition, we found four new velocity components associated with known masers. Five masers are concentrated in the DR21 ridge and W75N. We determined the characteristics of the detected masers and investigated the association with infrared, (sub)millimeter, and radio continuum emission. All maser sources are associated with (sub)millimeter dust continuum emission, which is consistent with the picture of masers tracing regions in an active stage of star formation. On the other hand, only five masers ($38pm17%$) have radio continuum counterparts seen with GLOSTAR within $sim$1$$, testifying to their youth. Comparing the distributions of the bolometric luminosity and the luminosity-to-mass ratio of cores that host 6.7~GHz methanol masers with those of the full core population, we identified lower limits $L_{rm Bol}sim200~L_odot$ and $L_{rm Bol}/M_{rm core}sim1~L_odot~M^{-1}_odot$ for a dust source to host maser emission.
The Multipurpose InfraRed Imaging System (MIRIS) performed the MIRIS Pa{alpha} Galactic Plane Survey (MIPAPS), which covers the entire Galactic plane within the latitude range of -3{deg} < b < +3{deg} at Pa{alpha} (1.87 um). We present the first result of the MIPAPS data extracted from the longitude range of l = 96.5{deg}-116.3{deg}, and demonstrate the data quality and scientific potential of the data by comparing them with H{alpha} maps obtained from the INT Photometric H{alpha} Survey (IPHAS) data. We newly identify 90 H II region candidates in the WISE H II region catalog as definite H II regions by detecting the Pa{alpha} and/or H{alpha} recombination lines, out of which 53 H II regions are detected at Pa{alpha}. We also report the detection of additional 29 extended and 18 point-like sources at Pa{alpha}. We estimate the E(B-V) color excesses and the total Lyman continuum luminosities for H II regions by combining the MIPAPS Pa{alpha} and IPHAS H{alpha} fluxes. The E(B-V) values are found to be systematically lower than those estimated from point stars associated with H II regions. Utilizing the MIPAPS Pa{alpha} and IPHAS H{alpha} images, we obtain an E(B-V) map for the entire region of the H II region Sh2-131 with an angular size of ~2.5{deg}. The E(B-V) map shows not only numerous high-extinction filamentary features but also negative E(B-V) regions, indicating H{alpha} excess. The H{alpha} excess and the systematic underestimation of E(B-V) are attributed to light scattered by dust.
Using the HEGRA system of imaging atmospheric Cherenkov telescopes, a region of the Galactic plane (-10 deg < b < 5 deg, 38 deg < l < 43 deg) was surveyed for TeV gamma-ray emission, both from point sources and of diffuse nature. The region covered includes 15 known pulsars, 6 known supernova remnants (SNR) and one unidentified EGRET source. No evidence for emission from point sources was detected; upper limits are typically below 0.1 Crab units for the flux above 1 TeV. For the diffuse gamma-ray flux from the Galactic plane, an upper limit of 6.1*10E-15 ph/(cm2 s sr MeV) was derived under the assumption that the spatial distribution measured by the EGRET instrument extends to the TeV regime. This upper flux limit is a factor of about 1.5 larger than the flux expected from the ensemble of gamma-ray unresolved Galactic cosmic ray sources.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا