Do you want to publish a course? Click here

Superlattice Induced by Charge Order in the Organic Spin Chain (TMTTF)$_2X$ ($X=$ SbF$_6$, AsF$_6$ and PF$_6$) Revealed by High Field EPR

109   0   0.0 ( 0 )
 Added by Sylvain Bertaina
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated the charge ordering phase of the quasi one dimensional quantum antiferromagnet (TMTTF)$_2X$ ($X=$ SbF$_6$, AsF$_6$ and PF$_6$) using high fields/frequencies electron paramagnetic resonance. In addition to the uniform displacement of the counter anions involved in the charge order phase, we report the existence of a superlattice between the spin chains in the direction $c$, caused by the space modulation of the charge order. When the field is high enough, the magnetic decoupling of the spin chains allows us to estimate the interaction between the chains, $J_c<1$~mK, three orders of magnitude lower than expected from the mean field theory.



rate research

Read More

Using a combination of Density Functional Theory, mean-field analysis and exact diagonalization calculations we reveal the emergence of a dimerized charge ordered state in TMTTF$_2$-PF$_6$ organic crystal. The interplay between charge and spin order leads to a rich phase diagram. Coexistence of charge ordering with a structural dimerization results in a ferroelectric phase, which has been observed experimentally. The tendency to the dimerization is magnetically driven revealing TMTTF$_2$-PF$_6$ as a multiferroic material.
We present a detailed low-temperature investigation of the statics and dynamics of the anions and methyl groups in the organic conductors (TMTSF)$_2$PF$_6$ and (TMTSF)$_2$AsF$_6$ (TMTSF : tetramethyl-tetraselenafulvalene). The 4 K neutron scattering structure refinement of the fully deuterated (TMTSF)$_2$PF$_6$-D12 salt allows locating precisely the methyl groups at 4 K. This structure is compared to the one of the fully hydrogenated (TMTSF)$_2$PF$_6$-H12 salt previously determined at the same temperature. Surprisingly it is found that deuteration corresponds to the application of a negative pressure of 5 x 10$^2$ MPa to the H12 salt. Accurate measurements of the Bragg intensity show anomalous thermal variations at low temperature both in the deuterated PF$_6$ and AsF$_6$ salts. Two different thermal behaviors have been distinguished. Low-Bragg-angle measurements reflect the presence of low-frequency modes at characteristic energies {theta}$_E$ = 8.3 K and {theta}$_E$ = 6.7 K for the PF$_6$-D12 and AsF$_6$-D12 salts, respectively. These modes correspond to the low-temperature methyl group motion. Large-Bragg-angle measurements evidence an unexpected structural change around 55 K which probably corresponds to the linkage of the anions to the methyl groups via the formation of F...D-CD2 bonds observed in the 4 K structural refinement. Finally we show that the thermal expansion coefficient of (TMTSF)$_2$PF$_6$ is dominated by the librational motion of the PF$_6$ units. We quantitatively analyze the low-temperature variation of the lattice expansion via the contribution of Einstein oscillators, which allows us to determine for the first time the characteristic frequency of the PF6 librations: {theta}$_E$ = 50 K and {theta}$_E$ = 76 K for the PF$_6$-D12 and PF$_6$-H12 salts, respectively.
We report a study of the 16.5 GHz dielectric function of hydrogenated and deuterated organic salts (TMTTF)$_2$PF$_6$. The temperature behavior of the dielectric function is consistent with short-range polar order whose relaxation time decreases rapidly below the charge ordering temperature. If this transition has more a relaxor character in the hydrogenated salt, charge ordering is strengthened in the deuterated one where the transition temperature has increased by more than thirty percent. Anomalies in the dielectric function are also observed in the spin-Peierls ground state revealing some intricate lattice effects in a temperature range where both phases coexist. The variation of the spin-Peierls ordering temperature under magnetic field appears to follow a mean-field prediction despite the presence of spin-Peierls fluctuations over a very wide temperature range in the charge ordered state of these salts.
94 - W. Yu , F. Zhang , F. Zamborszky 2004
(TMTTF)$_2$SbF$_6$ is known to undergo a charge ordering (CO) phase transition at $T_{CO}approx156K$ and another transition to an antiferromagnetic (AF) state at $T_Napprox 8K$. Applied pressure $P$ causes a decrease in both $T_{CO}$ and $T_N$. When $P>0.5 GPa$, the CO is largely supressed, and there is no remaining signature of AF order. Instead, the ground state is a singlet. In addition to establishing an expanded, general phase diagram for the physics of TMTTF salts, we establish the role of electron-lattice coupling in determining how the system evolves with pressure.
We report an ultrasonic study of the magneto-elastic coupling of the hydrogenated and deuterated (TMTTF)$_2$PF$_6$ organic salts. For both salts the temperature dependence of the longitudinal velocity along the c* axis displays a monotonic stiffening of the $C_{33}$ compressibility modulus upon cooling. Below the characteristic temperature scale 40 K the modulus stiffening becomes markedly enhanced, in concomitance with the reduction of spin degrees of freedom previously seen in magnetic measurements as low dimensional precursors of the spin-Peierls transition. The magneto-elastic coupling appears to be much weaker in the hydrogenated salt due to the highly inhomogeneous elastic behavior induced by the proximity of the charge ordering transition to the spin-Peierls phase. For the deuterated salt, an important anomaly in the ultrasound velocity is observed below the spin-Peierls transition temperature $T_{rm SP}$ in agreement with scaling of the elastic deformation with the spin-Peierls order parameter. In spite of the weakly inhomogeneous character of the spin-Peierls phase transition, the magnetic field dependence of $T_{rm SP}$ is well captured with the mean-field prediction for the lattice distorted Heisenberg spin chain.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا