Do you want to publish a course? Click here

The detectability of strong 21 centimetre forest absorbers from the diffuse intergalactic medium in late reionisation models

77   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A late end to reionisation at redshift $zsimeq 5.3$ is consistent with observed spatial variations in the Ly$alpha$ forest transmission and the deficit of Ly$alpha$ emitting galaxies around extended Ly$alpha$ absorption troughs at $z=5.5$. In this model, large islands of neutral hydrogen should persist in the diffuse intergalactic medium (IGM) until $zsimeq 6$. We use a novel, hybrid approach that combines high resolution cosmological hydrodynamical simulations with radiative transfer to predict the incidence of strong 21 cm forest absorbers with optical depths $tau_{21}>10^{-2}$ from the diffuse IGM in these late reionisation models. We include the effect of redshift space distortions on the simulated 21 cm forest spectra, and treat the highly uncertain heating of the pre-reionisation IGM by soft X-rays as a free parameter. For a model with only modest IGM pre-heating, such that average gas kinetic temperatures in the diffuse IGM remain below $T_{rm K}simeq 10^{2} rm, K$, we find that strong 21 cm forest absorption lines should persist until $z=6$. For a sample of $sim 10$ sufficiently radio loud background sources, a null-detection of 21 cm forest absorbers at $zsimeq 6$ with SKA1-low or possibly LOFAR should provide an informative lower limit on the still largely unconstrained soft X-ray background at high redshift and the temperature of the pre-reionisation IGM.



rate research

Read More

We discuss the feasibility of the detection of the 21cm forest in the diffuse IGM with the radio telescope LOFAR. The optical depth to the 21cm line has been derived using simulations of reionization which include detailed radiative transfer of ionizing photons. We find that the spectra from reionization models with similar total comoving hydrogen ionizing emissivity but different frequency distribution look remarkably similar. Thus, unless the reionization histories are very different from each other (e.g. a predominance of UV vs. x-ray heating) we do not expect to distinguish them by means of observations of the 21cm forest. Because the presence of a strong x-ray background would make the detection of 21cm line absorption impossible, the lack of absorption could be used as a probe of the presence/intensity of the x-ray background and the thermal history of the universe. Along a random line of sight LOFAR could detect a global suppression of the spectrum from z>12, when the IGM is still mostly neutral and cold, in contrast with the more well-defined, albeit broad, absorption features visible at lower redshift. Sharp, strong absorption features associated with rare, high density pockets of gas could be detected also at z~7 along preferential lines of sight.
We compare a sample of five high-resolution, high S/N Ly$alpha$ forest spectra of bright $6<z lesssim 6.5$ QSOs aimed at spectrally resolving the last remaining transmission spikes at $z>5$ with those obtained from mock absorption spectra from the Sherwood and Sherwood-Relics suites of hydrodynamical simulations of the intergalactic medium (IGM). We use a profile fitting procedure for the inverted transmitted flux, $1-F$, similar to the widely used Voigt profile fitting of the transmitted flux $F$ at lower redshifts, to characterise the transmission spikes that probe predominately underdense regions of the IGM. We are able to reproduce the width and height distributions of the transmission spikes, both with optically thin simulations of the post-reionization Universe using a homogeneous UV background and full radiative transfer simulations of a late reionization model. We find that the width of the fitted components of the simulated transmission spikes is very sensitive to the instantaneous temperature of the reionized IGM. The internal structures of the spikes are more prominant in low temeperature models of the IGM. The width distribution of the observed transmission spikes, which require high spectral resolution ($leq $ 8 km/s) to be resolved, is reproduced for optically thin simulations with a temperature at mean density of $T_0= (11000 pm 1600,10500pm 2100,12000 pm 2200)$ K at $z= (5.4,5.6,5.8)$. This is weakly dependent on the slope of the temperature-density relation, which is favoured to be moderately steeper than isothermal. In the inhomogeneous, late reionization, full radiative transfer simulations where islands of neutral hydrogen persist to $zsim5.3$, the width distribution of the observed transmission spikes is consistent with the range of $T_0$ caused by spatial fluctuations in the temperature-density relation.
We present composite spectra constructed from a sample of 242,150 Lyman-alpha (Lya) forest absorbers at redshifts 2.4<z<3.1 identified in quasar spectra from the Baryon Oscillation Spectroscopic Survey (BOSS) as part of Data Release 9 of the Sloan Digital Sky Survey III. We select forest absorbers by their flux in bins 138 km/s wide (approximately the size of the BOSS resolution element). We split these absorbers into five samples spanning the range of flux -0.05 < F<0.45. Tests on a smaller sample of high-resolution spectra show that our three strongest absorption bins would probe circumgalactic regions (projected separation < 300 proper kpc and |Delta v| < 300km/s) in about 60% of cases for very high signal-to-noise ratio. Within this subset, weakening Lya absorption is associated with decreasing purity of circumgalactic selection once BOSS noise is included. Our weaker two Lya absorption samples are dominated by the intergalactic medium. We present composite spectra of these samples and a catalogue of measured absorption features from HI and 13 metal ionization species, all of which we make available to the community. We compare measurements of seven Lyman series transitions in our composite spectra to single line models and obtain further constraints from their associated excess Lyman limit opacity. This analysis provides results consistent with column densities over the range 14.4 <~ Log (N_HI) <~ 16.45. We compare our measurements of metal absorption to a variety of simple single-line, single-phase models for a preliminary interpretation. Our results imply clumping on scales down to ~30 pc and near-solar metallicities in the circumgalactic samples, while high-ionization metal absorption consistent with typical IGM densities and metallicities is visible in all samples.
The intergalactic medium is expected to clump on scales down to $10^4-10^8$ M$_{odot}$ before the onset of reionization. The impact of these small-scale structures on reionization is poorly understood despite the modern understanding that gas clumpiness limits the growth of H II regions. We use a suite of radiation-hydrodynamics simulations that capture the $sim 10^4$ $M_odot$ Jeans mass of unheated gas to study density fluctuations during reionization. Our simulations track the complex ionization and hydrodynamical response of gas in the wake of ionization fronts. The clumping factor of ionized gas (proportional to the recombination rate) rises to a peak value of $5-20$ approximately $Delta t = 10$ Myr after ionization front passage, depending on the incident intensity, redshift, and degree to which the gas had been pre-heated by the first X-ray sources. The clumping factor reaches its relaxed value of $approx 3$ by $Delta t = 300$ Myr. The mean free path of Lyman-limit photons evolves in unison, being up to several times shorter in un-relaxed, recently reionized regions compared to those that were reionized much earlier. Assessing the impact of this response on the global reionizaton process, we find that un-relaxed gaseous structures boost the total number of recombinations by $approx 50$ % and lead to spatial fluctuations in the mean free path that persist appreciably for several hundred million years after the completion of reionization.
During reionization, the intergalactic medium is heated impulsively by supersonic ionization fronts (I-fronts). The peak gas temperatures behind the I-fronts, $T_mathrm{reion}$, are a key uncertainty in models of the thermal history after reionization. Here we use high-resolution radiative transfer simulations to study the parameter space of $T_mathrm{reion}$. We show that $T_mathrm{reion}$ is only mildly sensitive to the spectrum of incident radiation over most of the parameter space, with temperatures set primarily by I-front speeds. We also explore what current models of reionization predict for $T_mathrm{reion}$ by measuring I-front speeds in cosmological radiative transfer simulations. We find that the post-I-front temperatures evolve toward hotter values as reionization progresses. Temperatures of $T_mathrm{reion} = 17,000-22,000$ K are typical during the first half of reionization, but $T_mathrm{reion} = 25,000 - 30,000$ K may be achieved near the end of this process if I-front speeds reach $sim10^4$ km/s as found in our simulations. Shorter reionization epochs lead to hotter $T_mathrm{reion}$. We discuss implications for $z>5$ Ly$alpha$ forest observations, which potentially include sight lines through hot, recently reionized patches of the Universe. Interpolation tables from our parameter space study are made publicly available, along with a simple fit for the dependence of $T_mathrm{reion}$ on the I-front speed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا