Do you want to publish a course? Click here

NANOGrav signal and LIGO-Virgo Primordial Black Holes from Higgs inflation

101   0   0.0 ( 0 )
 Added by Zhu Yi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that the NANOGrav signal can come from the Higgs inflation with a noncanonical kinetic term in terms of the scalar induced gravitational waves. The scalar induced gravitational waves generated in our model are also detectable by space based gravitational wave observatories. Primordial black holes with stellar masses that can explain LIGO-Virgo events are also produced. Therefore, the NANOGrav signal and the BHs in LIGO-Virgo events may both originate from the Higgs field.



rate research

Read More

We discuss a possible connection between the recent NANOGrav results and the primordial black holes (PBHs) for the LIGO-Virgo events. In particular, we focus on the axion-like curvaton model, which provides a sizable amount of PBHs and GWs induced by scalar perturbations around the NANOGrav frequency range. The inevitable non-Gaussianity of this model suppresses the induced GWs associated with PBHs for the LIGO-Virgo events to be compatible with the NANOGrav results. We show that the axion-like curvaton model can account for PBHs for the LIGO-Virgo events and the NANOGrav results simultaneously.
We discuss the possibility of producing a significant fraction of dark matter in the form of primordial black holes in the context of the pre-big bang inflationary scenario. We take into account, to this purpose, the enhancement of curvature perturbations possibly induced by a variation of the sound-speed parameter $c_s$ during the string phase of high-curvature inflation. After imposing all relevant observational constraints, we find that the considered class of models is compatible with the production of a large amount of primordial black holes in the mass range relevant to dark matter, provided the sound-speed parameter is confined in a rather narrow range of values, $0.003 < c_s < 0.01$.
With approximately 50 binary black hole events detected by LIGO/Virgo to date and many more expected in the next few years, gravitational-wave astronomy is shifting from individual-event analyses to population studies. We perform a hierarchical Bayesian analysis on the GWTC-2 catalog by combining several astrophysical formation models with a population of primordial black holes. We compute the Bayesian evidence for a primordial population compared to the null hypothesis, and the inferred fraction of primordial black holes in the data. We find that these quantities depend on the set of assumed astrophysical models: the evidence for primordial black holes against an astrophysical-only multichannel model is decisively favored in some scenarios, but it is significantly reduced in the presence of a dominant stable-mass-transfer isolated formation channel. The primordial channel can explain mergers in the upper mass gap such as GW190521, but (depending on the astrophysical channels we consider) a significant fraction of the events could be of primordial origin even if we neglected GW190521. The tantalizing possibility that LIGO/Virgo may have already detected black holes formed after inflation should be verified by reducing uncertainties in astrophysical and primordial formation models, and it may ultimately be confirmed by third-generation interferometers.
123 - Qing Gao , Yungui Gong , Zhu Yi 2020
The production of primordial black hole (PBH) dark matter (DM) and the generation of scalar induced secondary gravitational waves by using the enhancement mechanism with a peak function in the non-canonical kinetic term in natural inflation is discussed. We show explicitly that the power spectrum for the primordial curvature perturbation is enhanced at $10^{12}$ Mpc$^{-1}$, $10^{8}$ Mpc$^{-1}$ and $10^{5}$ Mpc$^{-1}$, the production of PBH DM with peak masses around $10^{-13} M_{odot}$, the earths mass and the stellar mass, and the generation of scalar induced gravitational waves (SIGWs) with peak frequencies around mHz, $10^{-6}$ Hz and nHz, respectively. The PBHs with the mass scale $10^{-13} M_{odot}$ can make up almost all the DM and the associated SIGWs is testable by spaced based gravitational wave observatory.
282 - Qing Gao 2021
Chaotic inflation is inconsistent with the observational constraint at 68% CL. Here, we show that the enhancement mechanism with a peak function in the noncanonical kinetic term not only helps the chaotic model $V(phi)=V_0phi^{1/3}$ satisfy the observational constraint at large scales but also enhances the primordial scalar power spectrum by seven orders of magnitude at small scales. The enhanced curvature perturbations can produce primordial black holes of different masses and secondary gravitational waves with different peak frequencies. We also show that the non-Gaussianities of curvature perturbations have little effect on the abundance of primordial black holes and energy density of the scalar-induced secondary gravitational waves.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا