No Arabic abstract
Malnutrition is a global health crisis and is the leading cause of death among children under five. Detecting malnutrition requires anthropometric measurements of weight, height, and middle-upper arm circumference. However, measuring them accurately is a challenge, especially in the global south, due to limited resources. In this work, we propose a CNN-based approach to estimate the height of standing children under five years from depth images collected using a smart-phone. According to the SMART Methodology Manual [5], the acceptable accuracy for height is less than 1.4 cm. On training our deep learning model on 87131 depth images, our model achieved an average mean absolute error of 1.64% on 57064 test images. For 70.3% test images, we estimated height accurately within the acceptable 1.4 cm range. Thus, our proposed solution can accurately detect stunting (low height-for-age) in standing children below five years of age.
Depth cameras allow to set up reliable solutions for people monitoring and behavior understanding, especially when unstable or poor illumination conditions make unusable common RGB sensors. Therefore, we propose a complete framework for the estimation of the head and shoulder pose based on depth images only. A head detection and localization module is also included, in order to develop a complete end-to-end system. The core element of the framework is a Convolutional Neural Network, called POSEidon+, that receives as input three types of images and provides the 3D angles of the pose as output. Moreover, a Face-from-Depth component based on a Deterministic Conditional GAN model is able to hallucinate a face from the corresponding depth image. We empirically demonstrate that this positively impacts the system performances. We test the proposed framework on two public datasets, namely Biwi Kinect Head Pose and ICT-3DHP, and on Pandora, a new challenging dataset mainly inspired by the automotive setup. Experimental results show that our method overcomes several recent state-of-art works based on both intensity and depth input data, running in real-time at more than 30 frames per second.
Remarkable results have been achieved by DCNN based self-supervised depth estimation approaches. However, most of these approaches can only handle either day-time or night-time images, while their performance degrades for all-day images due to large domain shift and the variation of illumination between day and night images. To relieve these limitations, we propose a domain-separated network for self-supervised depth estimation of all-day images. Specifically, to relieve the negative influence of disturbing terms (illumination, etc.), we partition the information of day and night image pairs into two complementary sub-spaces: private and invariant domains, where the former contains the unique information (illumination, etc.) of day and night images and the latter contains essential shared information (texture, etc.). Meanwhile, to guarantee that the day and night images contain the same information, the domain-separated network takes the day-time images and corresponding night-time images (generated by GAN) as input, and the private and invariant feature extractors are learned by orthogonality and similarity loss, where the domain gap can be alleviated, thus better depth maps can be expected. Meanwhile, the reconstruction and photometric losses are utilized to estimate complementary information and depth maps effectively. Experimental results demonstrate that our approach achieves state-of-the-art depth estimation results for all-day images on the challenging Oxford RobotCar dataset, proving the superiority of our proposed approach.
A reliable sense-and-avoid system is critical to enabling safe autonomous operation of unmanned aircraft. Existing sense-and-avoid methods often require specialized sensors that are too large or power intensive for use on small unmanned vehicles. This paper presents a method to estimate object distances based on visual image sequences, allowing for the use of low-cost, on-board monocular cameras as simple collision avoidance sensors. We present a deep recurrent convolutional neural network and training method to generate depth maps from video sequences. Our network is trained using simulated camera and depth data generated with Microsofts AirSim simulator. Empirically, we show that our model achieves superior performance compared to models generated using prior methods.We further demonstrate that the method can be used for sense-and-avoid of obstacles in simulation.
Monocular 3D object detection task aims to predict the 3D bounding boxes of objects based on monocular RGB images. Since the location recovery in 3D space is quite difficult on account of absence of depth information, this paper proposes a novel unified framework which decomposes the detection problem into a structured polygon prediction task and a depth recovery task. Different from the widely studied 2D bounding boxes, the proposed novel structured polygon in the 2D image consists of several projected surfaces of the target object. Compared to the widely-used 3D bounding box proposals, it is shown to be a better representation for 3D detection. In order to inversely project the predicted 2D structured polygon to a cuboid in the 3D physical world, the following depth recovery task uses the object height prior to complete the inverse projection transformation with the given camera projection matrix. Moreover, a fine-grained 3D box refinement scheme is proposed to further rectify the 3D detection results. Experiments are conducted on the challenging KITTI benchmark, in which our method achieves state-of-the-art detection accuracy.
We address the problem of estimating a high quality dense depth map from a single RGB input image. We start out with a baseline encoder-decoder convolutional neural network architecture and pose the question of how the global processing of information can help improve overall depth estimation. To this end, we propose a transformer-based architecture block that divides the depth range into bins whose center value is estimated adaptively per image. The final depth values are estimated as linear combinations of the bin centers. We call our new building block AdaBins. Our results show a decisive improvement over the state-of-the-art on several popular depth datasets across all metrics. We also validate the effectiveness of the proposed block with an ablation study and provide the code and corresponding pre-trained weights of the new state-of-the-art model.