Do you want to publish a course? Click here

AdaBins: Depth Estimation using Adaptive Bins

102   0   0.0 ( 0 )
 Added by Shariq Bhat
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We address the problem of estimating a high quality dense depth map from a single RGB input image. We start out with a baseline encoder-decoder convolutional neural network architecture and pose the question of how the global processing of information can help improve overall depth estimation. To this end, we propose a transformer-based architecture block that divides the depth range into bins whose center value is estimated adaptively per image. The final depth values are estimated as linear combinations of the bin centers. We call our new building block AdaBins. Our results show a decisive improvement over the state-of-the-art on several popular depth datasets across all metrics. We also validate the effectiveness of the proposed block with an ablation study and provide the code and corresponding pre-trained weights of the new state-of-the-art model.

rate research

Read More

327 - Fei Lu , Hyeonwoo Yu , Jean Oh 2021
The advent of deep learning has brought an impressive advance to monocular depth estimation, e.g., supervised monocular depth estimation has been thoroughly investigated. However, the large amount of the RGB-to-depth dataset may not be always available since collecting accurate depth ground truth according to the RGB image is a time-consuming and expensive task. Although the network can be trained on an alternative dataset to overcome the dataset scale problem, the trained model is hard to generalize to the target domain due to the domain discrepancy. Adversarial domain alignment has demonstrated its efficacy to mitigate the domain shift on simple image classification tasks in previous works. However, traditional approaches hardly handle the conditional alignment as they solely consider the feature map of the network. In this paper, we propose an adversarial training model that leverages semantic information to narrow the domain gap. Based on the experiments conducted on the datasets for the monocular depth estimation task including KITTI and Cityscapes, the proposed compact model achieves state-of-the-art performance comparable to complex latest models and shows favorable results on boundaries and objects at far distances.
Deep learning techniques have enabled rapid progress in monocular depth estimation, but their quality is limited by the ill-posed nature of the problem and the scarcity of high quality datasets. We estimate depth from a single camera by leveraging the dual-pixel auto-focus hardware that is increasingly common on modern camera sensors. Classic stereo algorithms and prior learning-based depth estimation techniques under-perform when applied on this dual-pixel data, the former due to too-strong assumptions about RGB image matching, and the latter due to not leveraging the understanding of optics of dual-pixel image formation. To allow learning based methods to work well on dual-pixel imagery, we identify an inherent ambiguity in the depth estimated from dual-pixel cues, and develop an approach to estimate depth up to this ambiguity. Using our approach, existing monocular depth estimation techniques can be effectively applied to dual-pixel data, and much smaller models can be constructed that still infer high quality depth. To demonstrate this, we capture a large dataset of in-the-wild 5-viewpoint RGB images paired with corresponding dual-pixel data, and show how view supervision with this data can be used to learn depth up to the unknown ambiguities. On our new task, our model is 30% more accurate than any prior work on learning-based monocular or stereoscopic depth estimation.
76 - M. Salman Asif 2017
Recently, coded masks have been used to demonstrate a thin form-factor lensless camera, FlatCam, in which a mask is placed immediately on top of a bare image sensor. In this paper, we present an imaging model and algorithm to jointly estimate depth and intensity information in the scene from a single or multiple FlatCams. We use a light field representation to model the mapping of 3D scene onto the sensor in which light rays from different depths yield different modulation patterns. We present a greedy depth pursuit algorithm to search the 3D volume and estimate the depth and intensity of each pixel within the camera field-of-view. We present simulation results to analyze the performance of our proposed model and algorithm with different FlatCam settings.
Training deep networks for semantic segmentation requires large amounts of labeled training data, which presents a major challenge in practice, as labeling segmentation masks is a highly labor-intensive process. To address this issue, we present a framework for semi-supervised and domain-adaptive semantic segmentation, which is enhanced by self-supervised monocular depth estimation (SDE) trained only on unlabeled image sequences. In particular, we utilize SDE as an auxiliary task comprehensively across the entire learning framework: First, we automatically select the most useful samples to be annotated for semantic segmentation based on the correlation of sample diversity and difficulty between SDE and semantic segmentation. Second, we implement a strong data augmentation by mixing images and labels using the geometry of the scene. Third, we transfer knowledge from features learned during SDE to semantic segmentation by means of transfer and multi-task learning. And fourth, we exploit additional labeled synthetic data with Cross-Domain DepthMix and Matching Geometry Sampling to align synthetic and real data. We validate the proposed model on the Cityscapes dataset, where all four contributions demonstrate significant performance gains, and achieve state-of-the-art results for semi-supervised semantic segmentation as well as for semi-supervised domain adaptation. In particular, with only 1/30 of the Cityscapes labels, our method achieves 92% of the fully-supervised baseline performance and even 97% when exploiting additional data from GTA. The source code is available at https://github.com/lhoyer/improving_segmentation_with_selfsupervised_depth.
Malnutrition is a global health crisis and is the leading cause of death among children under five. Detecting malnutrition requires anthropometric measurements of weight, height, and middle-upper arm circumference. However, measuring them accurately is a challenge, especially in the global south, due to limited resources. In this work, we propose a CNN-based approach to estimate the height of standing children under five years from depth images collected using a smart-phone. According to the SMART Methodology Manual [5], the acceptable accuracy for height is less than 1.4 cm. On training our deep learning model on 87131 depth images, our model achieved an average mean absolute error of 1.64% on 57064 test images. For 70.3% test images, we estimated height accurately within the acceptable 1.4 cm range. Thus, our proposed solution can accurately detect stunting (low height-for-age) in standing children below five years of age.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا