We show that twisted reduced models can be interpreted as noncommutative Yang-Mills theory. Based upon this correspondence, we obtain noncommutative Yang-Mills theory with D-brane backgrounds in IIB matrix model. We propose that IIB matrix model with D-brane backgrounds serve as a concrete definition of noncommutative Yang-Mills. We investigate D-instanton solutions as local excitations on D3-branes. When instantons overlap, their interaction can be well described in gauge theory and AdS/CFT correspondence. We show that IIB matrix model gives us the consistent potential with IIB supergravity when they are well separated.
We study the bosonic matrix model obtained as the high-temperature limit of two-dimensional maximally supersymmetric SU($N$) Yang-Mills theory. So far, no consensus about the order of the deconfinement transition in this theory has been reached and this hinders progress in understanding the nature of the black hole/black string topology change from the gauge/gravity duality perspective. On the one hand, previous works considered the deconfinement transition consistent with two transitions which are of second and third order. On the other hand, evidence for a first order transition was put forward more recently. We perform high-statistics lattice Monte Carlo simulations at large $N$ and small lattice spacing to establish that the transition is really of first order. Our findings flag a warning that the required large-$N$ and continuum limit might not have been reached in earlier publications, and that was the source of the discrepancy. Moreover, our detailed results confirm the existence of a new partially deconfined phase which describes non-uniform black strings via the gauge/gravity duality. This phase exhibits universal features already predicted in quantum field theory.
We discuss bosonic and supersymmetric Yang-Mills matrix models with compact semi-simple gauge group. We begin by finding convergence conditions for the partition and correlation functions. Moving on, we specialise to the SU(N) models with large N. In both the Yang-Mills and cohomological formulations, we find all quantities which are invariant under the supercharges. Finally, we apply the deformation method of Moore, Nekrasov and Shatashvili directly to the Yang-Mills model. We find a deformation of the action which generates mass terms for all the matrix fields whilst preserving some supersymmetry. This allows us to rigorously integrate over a BRST quartet and arrive at the well known formula of MNS.
We consider the partition function and correlation functions in the bosonic and supersymmetric Yang-Mills matrix models with compact semi-simple gauge group. In the supersymmetric case, we show that the partition function converges when $D=4,6$ and 10, and that correlation functions of degree $k< k_c=2(D-3)$ are convergent independently of the group. In the bosonic case we show that the partition function is convergent when $D geq D_c$, and that correlation functions of degree $k < k_c$ are convergent, and calculate $D_c$ and $k_c$ for each group, thus extending our previous results for SU(N). As a special case these results establish that the partition function and a set of correlation functions in the IKKT IIB string matrix model are convergent.
We review our proposal for a constructive definition of superstring, type IIB matrix model. The IIB matrix model is a manifestly covariant model for space-time and matter which possesses N=2 supersymmetry in ten dimensions. We refine our arguments to reproduce string perturbation theory based on the loop equations. We emphasize that the space-time is dynamically determined from the eigenvalue distributions of the matrices. We also explain how matter, gauge fields and gravitation appear as fluctuations around dynamically determined space-time.
Consistent Yang--Mills anomalies $intom_{2n-k}^{k-1}$ ($ninN$, $ k=1,2, ldots ,2n$) as described collectively by Zuminos descent equations $deltaom_{2n-k}^{k-1}+ddom_{2n-k-1}^{k}=0$ starting with the Chern character $Ch_{2n}=ddom_{2n-1}^{0}$ of a principal $SU(N)$ bundle over a $2n$ dimensional manifold are considered (i.e. $intom_{2n-k}^{k-1}$ are the Chern--Simons terms ($k=1$), axial anomalies ($k=2$), Schwinger terms ($k=3$) etc. in $(2n-k)$ dimensions). A generalization in the spirit of Connes noncommutative geometry using a minimum of data is found. For an arbitrary graded differential algebra $CC=bigoplus_{k=0}^infty CC^{(k)}$ with exterior differentiation $dd$, form valued functions $Ch_{2n}: CC^{(1)}to CC^{(2n)}$ and $om_{2n-k}^{k-1}: underbrace{CC^{(0)}timescdots times CC^{(0)}}_{mbox{{small $(k-1)$ times}}} times CC^{(1)}to CC^{(2n-k)}$ are constructed which are connected by generalized descent equations $deltaom_{2n-k}^{k-1}+ddom_{2n-k-1}^{k}=(cdots)$. Here $Ch_{2n}= (F_A)^n$ where $F_A=dd(A)+A^2$ for $AinCC^{(1)}$, and $(cdots)$ is not zero but a sum of graded commutators which vanish under integrations (traces). The problem of constructing Yang--Mills anomalies on a given graded differential algebra is thereby reduced to finding an interesting integration $int$ on it. Examples for graded differential algebras with such integrations are given and thereby noncommutative generalizations of Yang--Mills anomalies are found.