Do you want to publish a course? Click here

Hierarchical Reinforcement Learning for Air-to-Air Combat

67   0   0.0 ( 0 )
 Added by Jaime Ide
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Artificial Intelligence (AI) is becoming a critical component in the defense industry, as recently demonstrated by DARPA`s AlphaDogfight Trials (ADT). ADT sought to vet the feasibility of AI algorithms capable of piloting an F-16 in simulated air-to-air combat. As a participant in ADT, Lockheed Martin`s (LM) approach combines a hierarchical architecture with maximum-entropy reinforcement learning (RL), integrates expert knowledge through reward shaping, and supports modularity of policies. This approach achieved a $2^{nd}$ place finish in the final ADT event (among eight total competitors) and defeated a graduate of the US Air Forces (USAF) F-16 Weapons Instructor Course in match play.



rate research

Read More

Urban air pollution has become a major environmental problem that threatens public health. It has become increasingly important to infer fine-grained urban air quality based on existing monitoring stations. One of the challenges is how to effectively select some relevant stations for air quality inference. In this paper, we propose a novel model based on reinforcement learning for urban air quality inference. The model consists of two modules: a station selector and an air quality regressor. The station selector dynamically selects the most relevant monitoring stations when inferring air quality. The air quality regressor takes in the selected stations and makes air quality inference with deep neural network. We conduct experiments on a real-world air quality dataset and our approach achieves the highest performance compared with several popular solutions, and the experiments show significant effectiveness of proposed model in tackling problems of air quality inference.
133 - Chenjun Xiao , Yifan Wu , Chen Ma 2019
Despite its potential to improve sample complexity versus model-free approaches, model-based reinforcement learning can fail catastrophically if the model is inaccurate. An algorithm should ideally be able to trust an imperfect model over a reasonably long planning horizon, and only rely on model-free updates when the model errors get infeasibly large. In this paper, we investigate techniques for choosing the planning horizon on a state-dependent basis, where a states planning horizon is determined by the maximum cumulative model error around that state. We demonstrate that these state-dependent model errors can be learned with Temporal Difference methods, based on a novel approach of temporally decomposing the cumulative model errors. Experimental results show that the proposed method can successfully adapt the planning horizon to account for state-dependent model accuracy, significantly improving the efficiency of policy learning compared to model-based and model-free baselines.
In many real-world scenarios, an autonomous agent often encounters various tasks within a single complex environment. We propose to build a graph abstraction over the environment structure to accelerate the learning of these tasks. Here, nodes are important points of interest (pivotal states) and edges represent feasible traversals between them. Our approach has two stages. First, we jointly train a latent pivotal state model and a curiosity-driven goal-conditioned policy in a task-agnostic manner. Second, provided with the information from the world graph, a high-level Manager quickly finds solution to new tasks and expresses subgoals in reference to pivotal states to a low-level Worker. The Worker can then also leverage the graph to easily traverse to the pivotal states of interest, even across long distance, and explore non-locally. We perform a thorough ablation study to evaluate our approach on a suite of challenging maze tasks, demonstrating significant advantages from the proposed framework over baselines that lack world graph knowledge in terms of performance and efficiency.
75 - Conghao Zhou , Wen Wu , Hongli He 2020
In this paper, we investigate a computing task scheduling problem in space-air-ground integrated network (SAGIN) for delay-oriented Internet of Things (IoT) services. In the considered scenario, an unmanned aerial vehicle (UAV) collects computing tasks from IoT devices and then makes online offloading decisions, in which the tasks can be processed at the UAV or offloaded to the nearby base station or the remote satellite. Our objective is to design a task scheduling policy that minimizes offloading and computing delay of all tasks given the UAV energy capacity constraint. To this end, we first formulate the online scheduling problem as an energy-constrained Markov decision process (MDP). Then, considering the task arrival dynamics, we develop a novel deep risk-sensitive reinforcement learning algorithm. Specifically, the algorithm evaluates the risk, which measures the energy consumption that exceeds the constraint, for each state and searches the optimal parameter weighing the minimization of delay and risk while learning the optimal policy. Extensive simulation results demonstrate that the proposed algorithm can reduce the task processing delay by up to 30% compared to probabilistic configuration methods while satisfying the UAV energy capacity constraint.
Air pollution is a major risk factor for global health, with both ambient and household air pollution contributing substantial components of the overall global disease burden. One of the key drivers of adverse health effects is fine particulate matter ambient pollution (PM$_{2.5}$) to which an estimated 3 million deaths can be attributed annually. The primary source of information for estimating exposures has been measurements from ground monitoring networks but, although coverage is increasing, there remain regions in which monitoring is limited. Ground monitoring data therefore needs to be supplemented with information from other sources, such as satellite retrievals of aerosol optical depth and chemical transport models. A hierarchical modelling approach for integrating data from multiple sources is proposed allowing spatially-varying relationships between ground measurements and other factors that estimate air quality. Set within a Bayesian framework, the resulting Data Integration Model for Air Quality (DIMAQ) is used to estimate exposures, together with associated measures of uncertainty, on a high resolution grid covering the entire world. Bayesian analysis on this scale can be computationally challenging and here approximate Bayesian inference is performed using Integrated Nested Laplace Approximations. Model selection and assessment is performed by cross-validation with the final model offering substantial increases in predictive accuracy, particularly in regions where there is sparse ground monitoring, when compared to current approaches: root mean square error (RMSE) reduced from 17.1 to 10.7, and population weighted RMSE from 23.1 to 12.1 $mu$gm$^{-3}$. Based on summaries of the posterior distributions for each grid cell, it is estimated that 92% of the worlds population reside in areas exceeding the World Health Organizations Air Quality Guidelines.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا