Do you want to publish a course? Click here

Superconductivity and charge-density wave formation in lithium intercalated 2H-LixTaS2

118   0   0.0 ( 0 )
 Added by Huanlong Liu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We systematically investigated the superconducting properties and the interplay between charge-density-waves (CDW) and superconductivity in lithium-intercalated 2H-TaS2. By gradually increasing the lithium content x, the CDW formation temperature is continuously suppressed, and the onset temperature of superconductivity is increased with a maximum transition temperature Tc = 3.5 K for x = 0.096. The bulk nature of superconductivity is confirmed by a superconducting shielding fraction of the order of unity for this composition. The electronic contribution to the specific heat and Hall resistivity data demonstrate that the CDW weakens with lithium-intercalation, thereby indirectly increasing carrier density and boosting superconductivity. While the sign of the charge carriers in undoped 2H-TaS2 changes from electron-like to hole type near the CDW formation temperature around 75 K, the lithium intercalated LixTaS2 show predominantly hole-type carriers in the CDW phase even for very low lithium contents.



rate research

Read More

Pd-intercalated ErTe$_3$ is studied as a model system to explore the effect of intertwined superconducting and charge density wave (CDW) orders. Despite the common wisdom that superconductivity emerges only when CDW is suppressed, we present data from STM and AC susceptibility measurements that show no direct competition between CDW order and superconductivity. Both coexist over most of the intercalation range, with uniform superconductivity over length scales that exceed the superconducting coherence length. This is despite persisting short-range CDW order and increased scattering from the Pd intercalation. While superconductivity is insensitive to local defects in either of the bi-directional CDWs, vestiges of the Fermi-level distortions are observed in the properties of the superconducting state.
The temperature dependence of the phonon spectrum in the superconducting transition metal dichalcogenide 2H-NbS$_2$ is measured by diffuse and inelastic x-ray scattering. A deep, wide and strongly temperature dependent softening, of the two lowest energy longitudinal phonons bands, appears along the $mathrm{Gamma M}$ symmetry line in reciprocal space. In sharp contrast to the iso-electronic compounds 2H-NbSe$_2$, the soft phonons energies are finite, even at very low temperature, and no charge density wave instability occurs, in disagreement with harmonic ab-initio calculations. We show that 2H-NbS$_2$ is at the verge of the charge density wave transition and its occurrence is only suppressed by the large anharmonic effects. Moreover, the anharmonicity and the electron phonon coupling both show a strong in-plane anisotropy.
Despite being usually considered two competing phenomena, charge-density-wave and superconductivity coexist in few systems, the most emblematic one being the transition metal dichalcogenide 2H-NbSe$_2$. This unusual condition is responsible for specific Raman signatures across the two phase transitions in this compound. While the appearance of a soft phonon mode is a well-established fingerprint of the charge-density-wave order, the nature of the sharp sub-gap mode emerging below the superconducting temperature is still under debate. In this work we use the external pressure as a knob to unveil the delicate interplay between the two orders, and consequently the nature of the superconducting mode. Thanks to an advanced extreme-conditions Raman technique we are able to follow the pressure evolution and the simultaneous collapse of the two intertwined charge density wave and superconducting modes. The comparison with microscopic calculations in a model system supports the Higgs-type nature of the superconducting mode and suggests that charge-density-wave and superconductivity in 2H-NbSe$_2$ involve mutual electronic degrees of freedom. These findings fill knowledge gap on the electronic mechanisms at play in transition metal dichalcogenides, a crucial step to fully exploit their properties in few-layers systems optimized for devices applications.
156 - C. Gomez , D. Braam , S. Tezok 2015
We demonstrate the sensitivity of transverse-field muon spin rotation (TF-muSR) to static charge-density-wave (CDW) order in the bulk of 2H-NbSe2. In the presence of CDW order the quadrupolar interaction of the 93Nb nuclei with the local electric-field gradient is modified, and this in turn affects the magnetic dipolar coupling of the positive muon to these nuclei. For a weak magnetic field applied parallel to the c-axis, we observe a small enhancement of the muon depolarization rate at temperatures below the established CDW phase transition. Aligning the applied field perpendicular to the c-axis, we observe a sensivity to static CDW order in regions of the sample extending up to nearly 3 times the CDW transition temperature. The results suggest that the muon is mobile over the temperature range explored above the superconducting transition temperature (Tc), and becomes trapped in the vicinity of defects.
272 - Xiangde Zhu , Wei Ning , Lijun Li 2016
Charge density wave (CDW), the periodic modulation of the electronic charge density, will open a gap on the Fermi surface that commonly leads to decreased or vanishing conductivity. On the other hand superconductivity, a commonly believed competing order, features a Fermi surface gap that results in infinite conductivity. Here we report that superconductivity emerges upon Se doping in CDW conductor ZrTe$_{3}$ when the long range CDW order is gradually suppressed. Superconducting critical temperature $T_c(x)$ in ZrTe$_{3-x}$Se$_x$ (${0leq}xleq0.1$) increases up to 4 K plateau for $0.04$$leq$$x$$leq$$0.07$. Further increase in Se content results in diminishing $T_{c}$ and filametary superconductivity. The CDW modes from Raman spectra are observed in $x$ = 0.04 and 0.1 crystals, where signature of ZrTe$_{3}$ CDW order in resistivity vanishes. The electronic-scattering for high $T_{c}$ crystals is dominated by local CDW fluctuations at high temperures, the resistivity is linear up to highest measured $T=300K$ and contributes to substantial in-plane anisotropy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا