Do you want to publish a course? Click here

Detection of precursor charge-density-wave order in 2H-NbSe2 by muSR

157   0   0.0 ( 0 )
 Added by Jeff E. Sonier
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate the sensitivity of transverse-field muon spin rotation (TF-muSR) to static charge-density-wave (CDW) order in the bulk of 2H-NbSe2. In the presence of CDW order the quadrupolar interaction of the 93Nb nuclei with the local electric-field gradient is modified, and this in turn affects the magnetic dipolar coupling of the positive muon to these nuclei. For a weak magnetic field applied parallel to the c-axis, we observe a small enhancement of the muon depolarization rate at temperatures below the established CDW phase transition. Aligning the applied field perpendicular to the c-axis, we observe a sensivity to static CDW order in regions of the sample extending up to nearly 3 times the CDW transition temperature. The results suggest that the muon is mobile over the temperature range explored above the superconducting transition temperature (Tc), and becomes trapped in the vicinity of defects.



rate research

Read More

Despite being usually considered two competing phenomena, charge-density-wave and superconductivity coexist in few systems, the most emblematic one being the transition metal dichalcogenide 2H-NbSe$_2$. This unusual condition is responsible for specific Raman signatures across the two phase transitions in this compound. While the appearance of a soft phonon mode is a well-established fingerprint of the charge-density-wave order, the nature of the sharp sub-gap mode emerging below the superconducting temperature is still under debate. In this work we use the external pressure as a knob to unveil the delicate interplay between the two orders, and consequently the nature of the superconducting mode. Thanks to an advanced extreme-conditions Raman technique we are able to follow the pressure evolution and the simultaneous collapse of the two intertwined charge density wave and superconducting modes. The comparison with microscopic calculations in a model system supports the Higgs-type nature of the superconducting mode and suggests that charge-density-wave and superconductivity in 2H-NbSe$_2$ involve mutual electronic degrees of freedom. These findings fill knowledge gap on the electronic mechanisms at play in transition metal dichalcogenides, a crucial step to fully exploit their properties in few-layers systems optimized for devices applications.
We investigate carrier and collective mode dynamics in 2H-NbSe$_2$ using time-resolved optical pump-probe spectroscopy and compare the results with first-principle calculations. Broadband ultrafast reflectivity studies of 2H-NbSe$_2$ in a wide temperature interval covering the normal, charge density wave (CDW) and superconducting phase were performed. Spectral features observed in the transient reflectivity experiment were associated with specific optical transitions obtained from band structure calculations. Displacive excitation of coherent phonons showed CDW-associated coherent oscillations of the soft phonon mode across the whole spectral range. Temperature evolution of this coherent phonon mode in the low-excitation linear regime shows softening of the mode down to the CDW transition temperature T$_{CDW}$ with subsequent hardening below T$_{CDW}$. The global fit of the broadband probe data reveals four different relaxation times associated with characteristic electron-electron, electron-phonon and phonon-phonon relaxation processes. From first principle calculations of electron-phonon coupling we associate the few picosecond electron-phonon relaxation time $tau_2$ with a specific group of phonons with frequencies around 20 meV. On the other hand, the anomalously long relaxation time of $tau_3$~100 ps is associated with anharmonicity-driven phonon-phonon scattering. All relaxation processes result from anomalies near the second order CDW phase transition that are reflected in the temperature dependencies of the characteristic relaxation times and amplitudes of optical densities. At highest fluences we observe electronic melting of the CDW and disappearance of the mode hardening below T$_{CDW}$.
The temperature dependence of the phonon spectrum in the superconducting transition metal dichalcogenide 2H-NbS$_2$ is measured by diffuse and inelastic x-ray scattering. A deep, wide and strongly temperature dependent softening, of the two lowest energy longitudinal phonons bands, appears along the $mathrm{Gamma M}$ symmetry line in reciprocal space. In sharp contrast to the iso-electronic compounds 2H-NbSe$_2$, the soft phonons energies are finite, even at very low temperature, and no charge density wave instability occurs, in disagreement with harmonic ab-initio calculations. We show that 2H-NbS$_2$ is at the verge of the charge density wave transition and its occurrence is only suppressed by the large anharmonic effects. Moreover, the anharmonicity and the electron phonon coupling both show a strong in-plane anisotropy.
We systematically investigated the superconducting properties and the interplay between charge-density-waves (CDW) and superconductivity in lithium-intercalated 2H-TaS2. By gradually increasing the lithium content x, the CDW formation temperature is continuously suppressed, and the onset temperature of superconductivity is increased with a maximum transition temperature Tc = 3.5 K for x = 0.096. The bulk nature of superconductivity is confirmed by a superconducting shielding fraction of the order of unity for this composition. The electronic contribution to the specific heat and Hall resistivity data demonstrate that the CDW weakens with lithium-intercalation, thereby indirectly increasing carrier density and boosting superconductivity. While the sign of the charge carriers in undoped 2H-TaS2 changes from electron-like to hole type near the CDW formation temperature around 75 K, the lithium intercalated LixTaS2 show predominantly hole-type carriers in the CDW phase even for very low lithium contents.
The charge density wave (CDW) state in van der Waals systems shows interesting scaling phenomena as the number of layers can significantly affect the CDW transition temperature, $T_{CDW}$. However, it is often difficult to use conventional methods to study the phase transition in these systems due to their small size and sensitivity to degradation. Degradation is an important parameter which has been shown to greatly influence the superconductivity in layered systems. Since the CDW state competes with the onset of superconductivity, it is expected that $T_{CDW}$ will also be affected by the degradation. Here, we probe the CDW phase transition by the mechanical resonances of suspended 2H-TaS2 and 2H-TaSe2 membranes and study the effect of disorder on the CDW state. Pristine flakes show the transition near the reported values of 75 K and 122 K respectively. We then study the effect of degradation on 2H-TaS2 which displays an enhancement of $T_{CDW}$ up to 129 K after degradation in ambient air. Finally, we study a sample with local degradation and observe that multiple phase transitions occur at 87 K, 103 K and 118 K with a hysteresis in temperature in the same membrane. The observed spatial variations in the Raman spectra suggest that variations in crystal structure cause domains with different transition temperatures which could result in the hysteresis. This work shows the potential of using nanomechanical resonance to characterize the CDW in suspended 2D materials and demonstrate that degradation can have a large effect on transition temperatures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا