Do you want to publish a course? Click here

Optical vortex manipulation for topological quantum computation

104   0   0.0 ( 0 )
 Added by Chengyun Hua
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Proposed approaches to topological quantum computation based on Majorana bound states may enable new paths to fault-tolerant quantum computing. Several recent experiments have suggested that the vortex cores of topological superconductors, such as iron-based superconductors, may host Majorana bound states at zero energy. To facilitate quantum computation with these zero-energy vortex bound states, a precise and fast manipulation of individual vortices is crucial. However, handling individual vortices remains a challenge, and a theoretical framework for describing individually controlled vortex motion is still critically needed. We propose a scheme for the use of local heating based on scanning optical microscopy to manipulate Majorana bound states emergent in the vortex cores of topological superconductors. Specifically, we derive the conditions required for transporting a single vortex between two stationary defects in the superconducting material by trapping it with a hot spot generated by local optical heating. Using these critical conditions for the vortex motion, we then establish the ideal material properties for the implementation of our manipulation scheme, which paves the way toward the controllable handling of zero-energy vortex bound states.

rate research

Read More

Optical control of chirality in chiral superconductors bears potential for future topological quantum computing applications. When a chiral domain is written and erased by a laser spot, the Majorana modes around the domain can be manipulated on ultrafast time scales. Here we study topological superconductors with two chiral order parameters coupled via light fields by a time-dependent real-space Ginzburg-Landau approach. Continuous optical driving, or the application of supercurrent, hybridizes the two chiral order parameters, allowing one to induce and control the superconducting state beyond what is possible in equilibrium. We show that superconductivity can even be enhanced if the mutual coupling between two order parameters is sufficiently strong. Furthermore, we demonstrate that short optical pulses with spot size larger than a critical one can overcome a counteracting diffusion effect and write, erase, or move chiral domains. Surprisingly, these domains are found to be stable, which might enable optically programmable quantum computers in the future.
Majorana fermions feature non-Abelian exchange statistics and promise fascinating applications in topological quantum computation. Recently, second-order topological superconductors (SOTSs) have been proposed to host Majorana fermions as localized quasiparticles with zero excitation energy, pointing out a new avenue to facilitate topological quantum computation. We provide a minimal model for SOTSs and systematically analyze the features of Majorana zero modes with analytical and numerical methods. We further construct the fundamental fusion principles of zero modes stemming from a single or multiple SOTS islands. Finally, we propose concrete schemes in different setups formed by SOTSs, enabling us to exchange and fuse the zero modes for non-Abelian braiding and holonomic quantum gate operations.
Quantum anomalous Hall insulator/superconductor heterostructures emerged as a competitive platform to realize topological superconductors with chiral Majorana edge states as shown in recent experiments [He et al. Science {bf 357}, 294 (2017)]. However, chiral Majorana modes, being extended, cannot be used for topological quantum computation. In this work, we show that quasi-one-dimensional quantum anomalous Hall structures exhibit a large topological regime (much larger than the two-dimensional case) which supports localized Majorana zero energy modes. The non-Abelian properties of a cross-shaped quantum anomalous Hall junction is shown explicitly by time-dependent calculations. We believe that networks of such quasi-one-dimensional quantum anomalous Hall systems can be easily fabricated for scalable topological quantum computation.
365 - Jay Sau , Sumanta Tewari 2021
We present a pedagogical review of topological superconductivity and its consequences in spin-orbit coupled semiconductor/superconductor heterostructures. We start by reviewing the historical origins of the notions of Dirac and Majorana fermions in particle physics and discuss how lower dimension
Magnetic field can penetrate into type-II superconductors in the form of Abrikosov vortices, which are magnetic flux tubes surrounded by circulating supercurrents often trapped at defects referred to as pinning sites. Although the average properties of the vortex matter can be tuned with magnetic fields, temperature or electric currents, handling of individual vortices remains challenging and has been demonstrated only with sophisticated magnetic force, superconducting quantum interference device or strain-induced scanning local probe microscopies. Here, we introduce a far-field optical method based on local heating of the superconductor with a focused laser beam to realize a fast, precise and non-invasive manipulation of individual Abrikosov vortices, in the same way as with optical tweezers. This simple approach provides the perfect basis for sculpting the magnetic flux profile in superconducting devices like a vortex lens or a vortex cleaner, without resorting to static pinning or ratchet effects. Since a single vortex can induce a Josephson phase shift, our method also paves the way to fast optical drive of Josephson junctions, with potential massive parallelization of operations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا