Do you want to publish a course? Click here

Topological and holonomic quantum computation based on second-order topological superconductors

149   0   0.0 ( 0 )
 Added by Song-Bo Zhang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Majorana fermions feature non-Abelian exchange statistics and promise fascinating applications in topological quantum computation. Recently, second-order topological superconductors (SOTSs) have been proposed to host Majorana fermions as localized quasiparticles with zero excitation energy, pointing out a new avenue to facilitate topological quantum computation. We provide a minimal model for SOTSs and systematically analyze the features of Majorana zero modes with analytical and numerical methods. We further construct the fundamental fusion principles of zero modes stemming from a single or multiple SOTS islands. Finally, we propose concrete schemes in different setups formed by SOTSs, enabling us to exchange and fuse the zero modes for non-Abelian braiding and holonomic quantum gate operations.



rate research

Read More

We propose a general theoretical framework for both constructing and diagnosing symmetry-protected higher-order topological superconductors using Kitaev building blocks, a higher-dimensional generalization of Kitaevs one-dimensional Majorana model. For a given crystalline symmetry, the Kitaev building blocks serve as a complete basis to construct all possible Kitaev superconductors that satisfy the symmetry requirements. Based on this Kitaev construction, we identify a simple but powerful bulk Majorana counting rule that can unambiguously diagnose the existence of higher-order topology for all Kitaev superconductors. For a systematic construction, we propose two inequivalent stacking strategies using the Kitaev building blocks and provide minimal tight-binding models to explicitly demonstrate each stacking approach. Notably, some of our Kitaev superconductors host higher-order topology that cannot be captured by the existing symmetry indicators in the literature. Nevertheless, our Majorana counting rule does enable a correct diagnosis for these beyond-indicator models. We conjecture that all Wannierizable superconductors should yield a decomposition in terms of our Kitaev building blocks, up to adiabatic deformations. Based on this conjecture, we propose a universal diagnosis of higher-order topology that possibly works for all Wannierizable superconductors. We also present a realistic example of higher-order topological superconductors with fragile Wannier obstruction to verify our conjectured universal diagnosis. Our work paves the way for a complete topological theory for superconductors.
We uncover an edge geometric phase mechanism to realize the second-order topological insulators and topological superconductors (SCs), and predict realistic materials for the realization. The theory is built on a novel result shown here that the nontrivial pseudospin textures of edge states in a class of two-dimensional (2D) topological insulators give rise to the geometric phases defined on the edge, for which the effective edge mass domain walls are obtained across corners when external magnetic field or superconductivity is considered, and the Dirac or Majorana Kramers corner modes are resulted. Remarkably, with this mechanism we predict the Majorana Kramers corner modes by fabricating 2D topological insulator on only a uniform and conventional $s$-wave SC, in sharp contrast to the previous proposals which applies unconventional SC pairing or SC $pi$-junction. We find that Au/GaAs(111) can be a realistic material candidate for realizing such Majorana Kramers corner modes.
Topological insulators embody a new state of matter characterized entirely by the topological invariants of the bulk electronic structure rather than any form of spontaneously broken symmetry. Unlike the 2D quantum Hall or quantum spin-Hall-like systems, the three dimensional (3D) topological insulators can host magnetism and superconductivity which has generated widespread research activity in condensed-matter and materials-physics communities. Thus there is an explosion of interest in understanding the rich interplay between topological and the broken-symmetry states (such as superconductivity), greatly spurred by proposals that superconductivity introduced into certain band structures will host exotic quasiparticles which are of interest in quantum information science. The observations of superconductivity in doped Bi_2Se_3 (Cu$_x$Bi$_2$Se$_3$) and doped Bi_2Te_3 (Pd$_x$-Bi$_2$Te$_3$ T$_c$ $sim$ 5K) have raised many intriguing questions about the spin-orbit physics of these ternary complexes while any rigorous theory of superconductivity remains elusive. Here we present key measurements of electron dynamics in systematically tunable normal state of Cu$_x$Bi$_2$Se$_3$ (x=0 to 12%) gaining insights into its spin-orbit behavior and the topological nature of the surface where superconductivity takes place at low temperatures. Our data reveal that superconductivity occurs (in sample compositions) with electrons in a bulk relativistic kinematic regime and we identify that an unconventional doping mechanism causes the topological surface character of the undoped compound to be preserved at the Fermi level of the superconducting compound, where Cooper pairing occurs at low temperatures. These experimental observations provide important clues for developing a theory of topological-superconductivity in 3D topological insulators.
Fully gapped two-dimensional superconductors coupled to dynamical electromagnetism are known to exhibit topological order. In this work, we develop a unified low-energy description for spin-singlet paired states by deriving topological Chern-Simons field theories for $s$-wave, $d+id$, and chiral higher even-wave superconductors. These theories capture the quantum statistics and fusion rules of Bogoliubov quasiparticles and vortices and incorporate global continuous symmetries - specifically, spin rotation and conservation of magnetic flux - present in all singlet superconductors. For all such systems, we compute the Hall response for these symmetries and investigate the physics at the edge. In particular, the weakly-coupled phase of a chiral $d+id$ chiral state has a spin Hall coefficient $ u_s=2$ and a vanishing Hall response for the magnetic flux symmetry. We argue that the latter is a generic result for two-dimensional superconductors with gapped photons, thereby demonstrating the absence of a spontaneous magnetic field in the ground state of chiral superconductors. It is also shown that the Chern-Simons theories of chiral spin-singlet superconductors derived here fall into Kitaevs 16-fold classification of topological superconductors.
96 - Yashar Komijani 2019
We propose to use residual parafermions of the overscreened Kondo effect for topological quantum computation. A superconducting proximity gap of $Delta<T_K$ can be utilized to isolate the parafermion from the continuum of excitations and stabilize the non-trivial fixed point. We use weak-coupling renormalization group, dynamical large-N technique and bosonization to show that the residual entropy of multichannel Kondo impurities survives in a superconductor. We find that while (in agreement with recent numerical studies) the non-trivial fixed point is unstable against intra-channel pairing, it is robust in presence of a finite inter-channel pairing. Based on this observation, we suggest a superconducting charge Kondo setup for isolating and detecting the Majorana fermion in the two-channel Kondo system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا