Do you want to publish a course? Click here

Methodological Foundation of a Numerical Taxonomy of Urban Form

97   0   0.0 ( 0 )
 Added by Martin Fleischmann
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Cities are complex products of human culture, characterised by a startling diversity of visible traits. Their form is constantly evolving, reflecting changing human needs and local contingencies, manifested in space by many urban patterns. Urban Morphology laid the foundation for understanding many such patterns, largely relying on qualitative research methods to extract distinct spatial identities of urban areas. However, the manual, labour-intensive and subjective nature of such approaches represents an impediment to the development of a scalable, replicable and data-driven urban form characterisation. Recently, advances in Geographic Data Science and the availability of digital mapping products, open the opportunity to overcome such limitations. And yet, our current capacity to systematically capture the heterogeneity of spatial patterns remains limited in terms of spatial parameters included in the analysis and hardly scalable due to the highly labour-intensive nature of the task. In this paper, we present a method for numerical taxonomy of urban form derived from biological systematics, which allows the rigorous detection and classification of urban types. Initially, we produce a rich numerical characterisation of urban space from minimal data input, minimizing limitations due to inconsistent data quality and availability. These are street network, building footprint, and morphological tessellation, a spatial unit derivative of Voronoi tessellation, obtained from building footprints. Hence, we derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form. After framing and presenting the method, we test it on two cities - Prague and Amsterdam - and discuss potential applications and further developments.



rate research

Read More

Urban analytics combines spatial analysis, statistics, computer science, and urban planning to understand and shape city futures. While it promises better policymaking insights, concerns exist around its epistemological scope and impacts on privacy, ethics, and social control. This chapter reflects on the history and trajectory of urban analytics as a scholarly and professional discipline. In particular, it considers the direction in which this field is going and whether it improves our collective and individual welfare. It first introduces early theories, models, and deductive methods from which the field originated before shifting toward induction. It then explores urban network analytics that enrich traditional representations of spatial interaction and structure. Next it discusses urban applications of spatiotemporal big data and machine learning. Finally, it argues that privacy and ethical concerns are too often ignored as ubiquitous monitoring and analytics can empower social repression. It concludes with a call for a more critical urban analytics that recognizes its epistemological limits, emphasizes human dignity, and learns from and supports marginalized communities.
The introduction of robots into our society will also introduce new concerns about personal privacy. In order to study these concerns, we must do human-subject experiments that involve measuring privacy-relevant constructs. This paper presents a taxonomy of privacy constructs based on a review of the privacy literature. Future work in operationalizing privacy constructs for HRI studies is also discussed.
Since the uptake of social media, researchers have mined online discussions to track the outbreak and evolution of specific diseases or chronic conditions such as influenza or depression. To broaden the set of diseases under study, we developed a Deep Learning tool for Natural Language Processing that extracts mentions of virtually any medical condition or disease from unstructured social media text. With that tool at hand, we processed Reddit and Twitter posts, analyzed the clusters of the two resulting co-occurrence networks of conditions, and discovered that they correspond to well-defined categories of medical conditions. This resulted in the creation of the first comprehensive taxonomy of medical conditions automatically derived from online discussions. We validated the structure of our taxonomy against the official International Statistical Classification of Diseases and Related Health Problems (ICD-11), finding matches of our clusters with 20 official categories, out of 22. Based on the mentions of our taxonomys sub-categories on Reddit posts geo-referenced in the U.S., we were then able to compute disease-specific health scores. As opposed to counts of disease mentions or counts with no knowledge of our taxonomys structure, we found that our disease-specific health scores are causally linked with the officially reported prevalence of 18 conditions.
Unprecedented human mobility has driven the rapid urbanization around the world. In China, the fraction of population dwelling in cities increased from 17.9% to 52.6% between 1978 and 2012. Such large-scale migration poses challenges for policymakers and important questions for researchers. To investigate the process of migrant integration, we employ a one-month complete dataset of telecommunication metadata in Shanghai with 54 million users and 698 million call logs. We find systematic differences between locals and migrants in their mobile communication networks and geographical locations. For instance, migrants have more diverse contacts and move around the city with a larger radius than locals after they settle down. By distinguishing new migrants (who recently moved to Shanghai) from settled migrants (who have been in Shanghai for a while), we demonstrate the integration process of new migrants in their first three weeks. Moreover, we formulate classification problems to predict whether a person is a migrant. Our classifier is able to achieve an F1-score of 0.82 when distinguishing settled migrants from locals, but it remains challenging to identify new migrants because of class imbalance. This classification setup holds promise for identifying new migrants who will successfully integrate into locals (new migrants that misclassified as locals).
Almost two centuries ago Pierre-Joseph Proudhon proposed social contracts -- voluntary agreements among free people -- as a foundation from which an egalitarian and just society can emerge. A emph{digital social contract} is the novel incarnation of this concept for the digital age: a voluntary agreement between people that is specified, undertaken, and fulfilled in the digital realm. It embodies the notion of code-is-law in its purest form, in that a digital social contract is in fact a program -- code in a social contracts programming language, which specifies the digital actions parties to the social contract may take; and the parties to the contract are entrusted, equally, with the task of ensuring that each party abides by the contract. Parties to a social contract are identified via their public keys, and the one and only type of action a party to a digital social contract may take is a digital speech act -- signing an utterance with her private key and sending it to the other parties to the contract. Here, we present a formal definition of a digital social contract as agents that communicate asynchronously via crypto-speech acts, where the output of each agent is the input of all the other agents. We outline an abstract design for a social contracts programming language and show, via programming examples, that key application areas, including social community; simple sharing-economy applications; egalitarian currency networks; and democratic community governance, can all be expressed elegantly and efficiently as digital social contracts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا