Do you want to publish a course? Click here

Urban Dreams of Migrants: A Case Study of Migrant Integration in Shanghai

138   0   0.0 ( 0 )
 Added by Zongtao Liu
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Unprecedented human mobility has driven the rapid urbanization around the world. In China, the fraction of population dwelling in cities increased from 17.9% to 52.6% between 1978 and 2012. Such large-scale migration poses challenges for policymakers and important questions for researchers. To investigate the process of migrant integration, we employ a one-month complete dataset of telecommunication metadata in Shanghai with 54 million users and 698 million call logs. We find systematic differences between locals and migrants in their mobile communication networks and geographical locations. For instance, migrants have more diverse contacts and move around the city with a larger radius than locals after they settle down. By distinguishing new migrants (who recently moved to Shanghai) from settled migrants (who have been in Shanghai for a while), we demonstrate the integration process of new migrants in their first three weeks. Moreover, we formulate classification problems to predict whether a person is a migrant. Our classifier is able to achieve an F1-score of 0.82 when distinguishing settled migrants from locals, but it remains challenging to identify new migrants because of class imbalance. This classification setup holds promise for identifying new migrants who will successfully integrate into locals (new migrants that misclassified as locals).



rate research

Read More

In the global move toward urbanization, making sure the people remaining in rural areas are not left behind in terms of development and policy considerations is a priority for governments worldwide. However, it is increasingly challenging to track important statistics concerning this sparse, geographically dispersed population, resulting in a lack of reliable, up-to-date data. In this study, we examine the usefulness of the Facebook Advertising platform, which offers a digital census of over two billions of its users, in measuring potential rural-urban inequalities. We focus on Italy, a country where about 30% of the population lives in rural areas. First, we show that the population statistics that Facebook produces suffer from instability across time and incomplete coverage of sparsely populated municipalities. To overcome such limitation, we propose an alternative methodology for estimating Facebook Ads audiences that nearly triples the coverage of the rural municipalities from 19% to 55% and makes feasible fine-grained sub-population analysis. Using official national census data, we evaluate our approach and confirm known significant urban-rural divides in terms of educational attainment and income. Extending the analysis to Facebook-specific user interests and behaviors, we provide further insights on the divide, for instance, finding that rural areas show a higher interest in gambling. Notably, we find that the most predictive features of income in rural areas differ from those for urban centres, suggesting researchers need to consider a broader range of attributes when examining rural wellbeing. The findings of this study illustrate the necessity of improving existing tools and methodologies to include under-represented populations in digital demographic studies -- the failure to do so could result in misleading observations, conclusions, and most importantly, policies.
Increasingly available high-frequency location datasets derived from smartphones provide unprecedented insight into trajectories of human mobility. These datasets can play a significant and growing role in informing preparedness and response to natural disasters. However, limited tools exist to enable rapid analytics using mobility data, and tend not to be tailored specifically for disaster risk management. We present an open-source, Python-based toolkit designed to conduct replicable and scalable post-disaster analytics using GPS location data. Privacy, system capabilities, and potential expansions of textit{Mobilkit} are discussed.
The non-pharmaceutical interventions (NPIs), aimed at reducing the diffusion of the COVID-19 pandemic, has dramatically influenced our behaviour in everyday life. In this work, we study how individuals adapted their daily movements and person-to-person contact patterns over time in response to the COVID-19 pandemic and the NPIs. We leverage longitudinal GPS mobility data of hundreds of thousands of anonymous individuals in four US states and empirically show the dramatic disruption in peoples life. We find that local interventions did not just impact the number of visits to different venues but also how people experience them. Individuals spend less time in venues, preferring simpler and more predictable routines and reducing person-to-person contact activities. Moreover, we show that the stringency of interventions alone does explain the number and duration of visits to venues: individual patterns of visits seem to be influenced by the local severity of the pandemic and a risk adaptation factor, which increases the peoples mobility regardless of the stringency of interventions.
In the digital era, individuals are increasingly profiled and grouped based on the traces they leave behind in online social networks such as Twitter and Facebook. In this paper, we develop and evaluate a novel text analysis approach for studying user identity and social roles by redefining identity as a sequence of timestamped items (e.g. tweet texts). We operationalise this idea by developing a novel text distance metric, the time-sensitive semantic edit distance (t-SED), which accounts for the temporal context across multiple traces. To evaluate this method we undertake a case study of Russian online-troll activity within US political discourse. The novel metric allows us to classify the social roles of trolls based on their traces, in this case tweets, into one of the predefined categories left-leaning, right-leaning, and news feed. We show the effectiveness of the t-SED metric to measure the similarities between tweets while accounting for the temporal context, and we use novel data visualisation techniques and qualitative analysis to uncover new empirical insights into Russian troll activity that have not been identified in previous work. Additionally, we highlight a connection with the field of Actor-Network Theory and the related hypotheses of Gabriel Tarde, and we discuss how social sequence analysis using t-SED may provide new avenues for tackling a longstanding problem in social theory: how to analyse society without separating reality into micro versus macro levels.
Previous surveys of public attitudes toward automated vehicle (AV) and transit integration primarily took place in large urban areas. AV-transit integration also has a great potential in small urban areas. A survey of public attitudes towards AV-transit integration was carried out in two small urban areas in Wisconsin, United States. A total of 266 finished responses were analyzed using text mining, factor analysis, and regression analysis. Results showed that respondents knew about AVs and driving assistance technologies. Respondents welcome AV-transit integration but were unsure about its potential impacts. Technology-savvy respondents were more positive but had more concerns about AV-transit integration than others. Respondents who enjoyed driving were not necessarily against transit, as they were more positive about AV-transit integration and were more willing to use automated buses than those who did not enjoy driving as much. Transit users were more positive toward AV-transit integration than non-transit users.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا