No Arabic abstract
We present an end-to-end model using streaming physiological time series to accurately predict near-term risk for hypoxemia, a rare, but life-threatening condition known to cause serious patient harm during surgery. Our proposed model makes inference on both hypoxemia outcomes and future input sequences, enabled by a joint sequence autoencoder that simultaneously optimizes a discriminative decoder for label prediction, and two auxiliary decoders trained for data reconstruction and forecast, which seamlessly learns future-indicative latent representation. All decoders share a memory-based encoder that helps capture the global dynamics of patient data. In a large surgical cohort of 73,536 surgeries at a major academic medical center, our model outperforms all baselines and gives a large performance gain over the state-of-the-art hypoxemia prediction system. With a high sensitivity cutoff at 80%, it presents 99.36% precision in predicting hypoxemia and 86.81% precision in predicting the much more severe and rare hypoxemic condition, persistent hypoxemia. With exceptionally low rate of false alarms, our proposed model is promising in improving clinical decision making and easing burden on the health system.
Representation learning of pedestrian trajectories transforms variable-length timestamp-coordinate tuples of a trajectory into a fixed-length vector representation that summarizes spatiotemporal characteristics. It is a crucial technique to connect feature-based data mining with trajectory data. Trajectory representation is a challenging problem, because both environmental constraints (e.g., wall partitions) and temporal user dynamics should be meticulously considered and accounted for. Furthermore, traditional sequence-to-sequence autoencoders using maximum log-likelihood often require dataset covering all the possible spatiotemporal characteristics to perform well. This is infeasible or impractical in reality. We propose TREP, a practical pedestrian trajectory representation learning algorithm which captures the environmental constraints and the pedestrian dynamics without the need of any training dataset. By formulating a sequence-to-sequence autoencoder with a spatial-aware objective function under the paradigm of actor-critic reinforcement learning, TREP intelligently encodes spatiotemporal characteristics of trajectories with the capability of handling diverse trajectory patterns. Extensive experiments on both synthetic and real datasets validate the high fidelity of TREP to represent trajectories.
Given a sequence of sets, where each set contains an arbitrary number of elements, the problem of temporal sets prediction aims to predict the elements in the subsequent set. In practice, temporal sets prediction is much more complex than predictive modelling of temporal events and time series, and is still an open problem. Many possible existing methods, if adapted for the problem of temporal sets prediction, usually follow a two-step strategy by first projecting temporal sets into latent representations and then learning a predictive model with the latent representations. The two-step approach often leads to information loss and unsatisfactory prediction performance. In this paper, we propose an integrated solution based on the deep neural networks for temporal sets prediction. A unique perspective of our approach is to learn element relationship by constructing set-level co-occurrence graph and then perform graph convolutions on the dynamic relationship graphs. Moreover, we design an attention-based module to adaptively learn the temporal dependency of elements and sets. Finally, we provide a gated updating mechanism to find the hidden shared patterns in different sequences and fuse both static and dynamic information to improve the prediction performance. Experiments on real-world data sets demonstrate that our approach can achieve competitive performances even with a portion of the training data and can outperform existing methods with a significant margin.
Molecule generation is to design new molecules with specific chemical properties and further to optimize the desired chemical properties. Following previous work, we encode molecules into continuous vectors in the latent space and then decode the vectors into molecules under the variational autoencoder (VAE) framework. We investigate the posterior collapse problem of current RNN-based VAEs for molecule sequence generation. For the first time, we find that underestimated reconstruction loss leads to posterior collapse, and provide both theoretical and experimental evidence. We propose an effective and efficient solution to fix the problem and avoid posterior collapse. Without bells and whistles, our method achieves SOTA reconstruction accuracy and competitive validity on the ZINC 250K dataset. When generating 10,000 unique valid SMILES from random prior sampling, it costs JT-VAE1450s while our method only needs 9s. Our implementation is at https://github.com/chaoyan1037/Re-balanced-VAE.
Sequences play an important role in many engineering applications and systems. Searching sequences with desired properties has long been an interesting but also challenging research topic. This article proposes a novel method, called HpGAN, to search desired sequences algorithmically using generative adversarial networks (GAN). HpGAN is based on the idea of zero-sum game to train a generative model, which can generate sequences with characteristics similar to the training sequences. In HpGAN, we design the Hopfield network as an encoder to avoid the limitations of GAN in generating discrete data. Compared with traditional sequence construction by algebraic tools, HpGAN is particularly suitable for intractable problems with complex objectives which prevent mathematical analysis. We demonstrate the search capabilities of HpGAN in two applications: 1) HpGAN successfully found many different mutually orthogonal complementary code sets (MOCCS) and optimal odd-length Z-complementary pairs (OB-ZCPs) which are not part of the training set. In the literature, both MOCSSs and OB-ZCPs have found wide applications in wireless communications. 2) HpGAN found new sequences which achieve four-times increase of signal-to-interference ratio--benchmarked against the well-known Legendre sequence--of a mismatched filter (MMF) estimator in pulse compression radar systems. These sequences outperform those found by AlphaSeq.
Hypoxemia, a medical condition that occurs when the blood is not carrying enough oxygen to adequately supply the tissues, is a leading indicator for dangerous complications of respiratory diseases like asthma, COPD, and COVID-19. While purpose-built pulse oximeters can provide accurate blood-oxygen saturation (SpO$_2$) readings that allow for diagnosis of hypoxemia, enabling this capability in unmodified smartphone cameras via a software update could give more people access to important information about their health, as well as improve physicians ability to remotely diagnose and treat respiratory conditions. In this work, we take a step towards this goal by performing the first clinical development validation on a smartphone-based SpO$_2$ sensing system using a varied fraction of inspired oxygen (FiO$_2$) protocol, creating a clinically relevant validation dataset for solely smartphone-based methods on a wide range of SpO$_2$ values (70%-100%) for the first time. This contrasts with previous studies, which evaluated performance on a far smaller range (85%-100%). We build a deep learning model using this data to demonstrate accurate reporting of SpO$_2$ level with an overall MAE=5.00% SpO$_2$ and identifying positive cases of low SpO$_2$<90% with 81% sensitivity and 79% specificity. We ground our analysis with a summary of recent literature in smartphone-based SpO2 monitoring, and we provide the data from the FiO$_2$ study in open-source format, so that others may build on this work.