Do you want to publish a course? Click here

Enhancing the settling time estimation of a class of fixed-time stable systems

124   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

This paper deals with the convergence time analysis of a class of fixed-time stable systems with the aim to provide a new non-conservative upper bound for its settling time. Our contribution is fourfold. First, we revisit the well-known class of fixed-time stable systems, given in (Polyakov et al.,2012}, while showing the conservatism of the classical upper estimate of the settling time. Second, we provide the smallest constant that uniformly upper bounds the settling time of any trajectory of the system under consideration. Third, introducing a slight modification of the previous class of fixed-time systems, we propose a new predefined-time convergent algorithm where the least upper bound of the settling time is set a priori as a parameter of the system. At last, predefined-time controllers for first order and second order systems are introduced. Some simulation results highlight the performance of the proposed scheme in terms of settling time estimation compared to existing methods.



rate research

Read More

Algorithms having uniform convergence with respect to their initial condition (i.e., with fixed-time stability) are receiving increasing attention for solving control and observer design problems under time constraints. However, we still lack a general methodology to design these algorithms for high-order perturbed systems when we additionally need to impose a user-defined upper-bound on their settling time, especially for systems with perturbations. Here, we fill this gap by introducing a methodology to redesign a class of asymptotically, finite- and fixed-time stable systems into non-autonomous fixed-time stable systems with a user-defined upper-bound on their settling time. Our methodology redesigns a system by adding time-varying gains. However, contrary to existing methods where the time-varying gains tend to infinity as the origin is reached, we provide sufficient conditions to maintain bounded gains. We illustrate our methodology by building fixed-time online differentiators with user-defined upper-bound on their settling time and bounded gains.
This paper aims to provide a methodology for generating autonomous and non-autonomous systems with a fixed-time stable equilibrium point where an Upper Bound of the Settling Time (UBST) is set a priori as a parameter of the system. In addition, some conditions for such an upper bound to be the least one are provided. This construction procedure is a relevant contribution when compared with traditional methodologies for generating fixed-time algorithms satisfying time constraints since current estimates of an UBST may be too conservative. The proposed methodology is based on time-scale transformations and Lyapunov analysis. It allows the presentation of a broad class of fixed-time stable systems with predefined UBST, placing them under a common framework with existing methods using time-varying gains. To illustrate the effectiveness of our approach, we generate novel, autonomous and non-autonomous, fixed-time stable algorithms with predefined least UBST.
Linear time-varying (LTV) systems are widely used for modeling real-world dynamical systems due to their generality and simplicity. Providing stability guarantees for LTV systems is one of the central problems in control theory. However, existing approaches that guarantee stability typically lead to significantly sub-optimal cumulative control cost in online settings where only current or short-term system information is available. In this work, we propose an efficient online control algorithm, COvariance Constrained Online Linear Quadratic (COCO-LQ) control, that guarantees input-to-state stability for a large class of LTV systems while also minimizing the control cost. The proposed method incorporates a state covariance constraint into the semi-definite programming (SDP) formulation of the LQ optimal controller. We empirically demonstrate the performance of COCO-LQ in both synthetic experiments and a power system frequency control example.
This paper considers the problem of simultaneous estimation of the attitude, position and linear velocity for vehicles navigating in a three-dimensional space. We propose two types of hybrid nonlinear observers using continuous angular velocity and linear acceleration measurements as well as intermittent landmark position measurements. The first type relies on a fixed-gain design approach based on an infinite-dimensional optimization, while the second one relies on a variable-gain design approach based on a continuous-discrete Riccati equation. For each case, we provide two different observers with and without the estimation of the gravity vector. The proposed observers are shown to be exponentially stable with a large domain of attraction. Simulation and experimental results are presented to illustrate the performance of the proposed observers.
This paper addresses the robust consensus problem under switching topologies. Contrary to existing methods, the proposed approach provides decentralized protocols that achieve consensus for networked multi-agent systems in a predefined time. Namely, the protocol design provides a tuning parameter that allows setting the convergence time of the agents to a consensus state. An appropriate Lyapunov analysis exposes the capability of the current proposal to achieve predefined-time consensus over switching topologies despite the presence of bounded perturbations. Finally, the paper presents a comparison showing that the suggested approach subsumes existing fixed-time consensus algorithms and provides extra degrees of freedom to obtain predefined-time consensus protocols that are less over-engineered, i.e., the difference between the estimated convergence time and its actual value is lower in our approach. Numerical results are given to illustrate the effectiveness and advantages of the proposed approach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا