Do you want to publish a course? Click here

Statistical Inference with M-Estimators on Adaptively Collected Data

65   0   0.0 ( 0 )
 Added by Kelly Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Bandit algorithms are increasingly used in real-world sequential decision-making problems. Associated with this is an increased desire to be able to use the resulting datasets to answer scientific questions like: Did one type of ad lead to more purchases? In which contexts is a mobile health intervention effective? However, classical statistical approaches fail to provide valid confidence intervals when used with data collected with bandit algorithms. Alternative methods have recently been developed for simple models (e.g., comparison of means). Yet there is a lack of general methods for conducting statistical inference using more complex models on data collected with (contextual) bandit algorithms; for example, current methods cannot be used for valid inference on parameters in a logistic regression model for a binary reward. In this work, we develop theory justifying the use of M-estimators -- which includes estimators based on empirical risk minimization as well as maximum likelihood -- on data collected with adaptive algorithms, including (contextual) bandit algorithms. Specifically, we show that M-estimators, modified with particular adaptive weights, can be used to construct asymptotically valid confidence regions for a variety of inferential targets.



rate research

Read More

Learning optimal policies from historical data enables the gains from personalization to be realized in a wide variety of applications. The growing policy learning literature focuses on a setting where the treatment assignment policy does not adapt to the data. However, adaptive data collection is becoming more common in practice, from two primary sources: 1) data collected from adaptive experiments that are designed to improve inferential efficiency; 2) data collected from production systems that are adaptively evolving an operational policy to improve performance over time (e.g. contextual bandits). In this paper, we aim to address the challenge of learning the optimal policy with adaptively collected data and provide one of the first theoretical inquiries into this problem. We propose an algorithm based on generalized augmented inverse propensity weighted estimators and establish its finite-sample regret bound. We complement this regret upper bound with a lower bound that characterizes the fundamental difficulty of policy learning with adaptive data. Finally, we demonstrate our algorithms effectiveness using both synthetic data and public benchmark datasets.
Multi-armed bandit algorithms have been argued for decades as useful for adaptively randomized experiments. In such experiments, an algorithm varies which arms (e.g. alternative interventions to help students learn) are assigned to participants, with the goal of assigning higher-reward arms to as many participants as possible. We applied the bandit algorithm Thompson Sampling (TS) to run adaptive experiments in three university classes. Instructors saw great value in trying to rapidly use data to give their students in the experiments better arms (e.g. better explanations of a concept). Our deployment, however, illustrated a major barrier for scientists and practitioners to use such adaptive experiments: a lack of quantifiable insight into how much statistical analysis of specific real-world experiments is impacted (Pallmann et al, 2018; FDA, 2019), compared to traditional uniform random assignment. We therefore use our case study of the ubiquitous two-arm binary reward setting to empirically investigate the impact of using Thompson Sampling instead of uniform random assignment. In this setting, using common statistical hypothesis tests, we show that collecting data with TS can as much as double the False Positive Rate (FPR; incorrectly reporting differences when none exist) and the False Negative Rate (FNR; failing to report differences when they exist)...
Adaptive collection of data is commonplace in applications throughout science and engineering. From the point of view of statistical inference however, adaptive data collection induces memory and correlation in the samples, and poses significant challenge. We consider the high-dimensional linear regression, where the samples are collected adaptively, and the sample size $n$ can be smaller than $p$, the number of covariates. In this setting, there are two distinct sources of bias: the first due to regularization imposed for consistent estimation, e.g. using the LASSO, and the second due to adaptivity in collecting the samples. We propose online debiasing, a general procedure for estimators such as the LASSO, which addresses both sources of bias. In two concrete contexts $(i)$ time series analysis and $(ii)$ batched data collection, we demonstrate that online debiasing optimally debiases the LASSO estimate when the underlying parameter $theta_0$ has sparsity of order $o(sqrt{n}/log p)$. In this regime, the debiased estimator can be used to compute $p$-values and confidence intervals of optimal size.
From scientific experiments to online A/B testing, the previously observed data often affects how future experiments are performed, which in turn affects which data will be collected. Such adaptivity introduces complex correlations between the data and the collection procedure. In this paper, we prove that when the data collection procedure satisfies natural conditions, then sample means of the data have systematic emph{negative} biases. As an example, consider an adaptive clinical trial where additional data points are more likely to be tested for treatments that show initial promise. Our surprising result implies that the average observed treatment effects would underestimate the true effects of each treatment. We quantitatively analyze the magnitude and behavior of this negative bias in a variety of settings. We also propose a novel debiasing algorithm based on selective inference techniques. In experiments, our method can effectively reduce bias and estimation error.
Parkinsons Disease is a neurological disorder and prevalent in elderly people. Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests. The high-resolution longitudinal activity data collected by smartphone applications nowadays make it possible to conduct remote and convenient health assessment. However, out-of-lab tests often suffer from poor quality controls as well as irregularly collected observations, leading to noisy test results. To address these issues, we propose a novel time-series based approach to predicting Parkinsons Disease with raw activity test data collected by smartphones in the wild. The proposed method first synchronizes discrete activity tests into multimodal features at unified time points. Next, it distills and enriches local and global representations from noisy data across modalities and temporal observations by two attention modules. With the proposed mechanisms, our model is capable of handling noisy observations and at the same time extracting refined temporal features for improved prediction performance. Quantitative and qualitative results on a large public dataset demonstrate the effectiveness of the proposed approach.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا