Do you want to publish a course? Click here

Analysis of Legal Documents via Non-negative Matrix Factorization Methods

89   0   0.0 ( 0 )
 Added by Pengyu Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The California Innocence Project (CIP), a clinical law school program aiming to free wrongfully convicted prisoners, evaluates thousands of mails containing new requests for assistance and corresponding case files. Processing and interpreting this large amount of information presents a significant challenge for CIP officials, which can be successfully aided by topic modeling techniques.In this paper, we apply Non-negative Matrix Factorization (NMF) method and implement various offshoots of it to the important and previously unstudied data set compiled by CIP. We identify underlying topics of existing case files and classify request files by crime type and case status (decision type). The results uncover the semantic structure of current case files and can provide CIP officials with a general understanding of newly received case files before further examinations. We also provide an exposition of popular variants of NMF with their experimental results and discuss the benefits and drawbacks of each variant through the real-world application.



rate research

Read More

The Baum-Welsh algorithm together with its derivatives and variations has been the main technique for learning Hidden Markov Models (HMM) from observational data. We present an HMM learning algorithm based on the non-negative matrix factorization (NMF) of higher order Markovian statistics that is structurally different from the Baum-Welsh and its associated approaches. The described algorithm supports estimation of the number of recurrent states of an HMM and iterates the non-negative matrix factorization (NMF) algorithm to improve the learned HMM parameters. Numerical examples are provided as well.
In this paper we explore avenues for improving the reliability of dimensionality reduction methods such as Non-Negative Matrix Factorization (NMF) as interpretive exploratory data analysis tools. We first explore the difficulties of the optimization problem underlying NMF, showing for the first time that non-trivial NMF solutions always exist and that the optimization problem is actually convex, by using the theory of Completely Positive Factorization. We subsequently explore four novel approaches to finding globally-optimal NMF solutions using various ideas from convex optimization. We then develop a new method, isometric NMF (isoNMF), which preserves non-negativity while also providing an isometric embedding, simultaneously achieving two properties which are helpful for interpretation. Though it results in a more difficult optimization problem, we show experimentally that the resulting method is scalable and even achieves more compact spectra than standard NMF.
Non-negative matrix factorization (NMF) approximates a given matrix as a product of two non-negative matrices. Multiplicative algorithms deliver reliable results, but they show slow convergence for high-dimensional data and may be stuck away from local minima. Gradient descent methods have better behavior, but only apply to smooth losses such as the least-squares loss. In this article, we propose a first-order primal-dual algorithm for non-negative decomposition problems (where one factor is fixed) with the KL divergence, based on the Chambolle-Pock algorithm. All required computations may be obtained in closed form and we provide an efficient heuristic way to select step-sizes. By using alternating optimization, our algorithm readily extends to NMF and, on synthetic examples, face recognition or music source separation datasets, it is either faster than existing algorithms, or leads to improved local optima, or both.
102 - Moses Charikar , Lunjia Hu 2021
In the non-negative matrix factorization (NMF) problem, the input is an $mtimes n$ matrix $M$ with non-negative entries and the goal is to factorize it as $Mapprox AW$. The $mtimes k$ matrix $A$ and the $ktimes n$ matrix $W$ are both constrained to have non-negative entries. This is in contrast to singular value decomposition, where the matrices $A$ and $W$ can have negative entries but must satisfy the orthogonality constraint: the columns of $A$ are orthogonal and the rows of $W$ are also orthogonal. The orthogonal non-negative matrix factorization (ONMF) problem imposes both the non-negativity and the orthogonality constraints, and previous work showed that it leads to better performances than NMF on many clustering tasks. We give the first constant-factor approximation algorithm for ONMF when one or both of $A$ and $W$ are subject to the orthogonality constraint. We also show an interesting connection to the correlation clustering problem on bipartite graphs. Our experiments on synthetic and real-world data show that our algorithm achieves similar or smaller errors compared to previous ONMF algorithms while ensuring perfect orthogonality (many previous algorithms do not satisfy the hard orthogonality constraint).
Dimensionality reduction is considered as an important step for ensuring competitive performance in unsupervised learning such as anomaly detection. Non-negative matrix factorization (NMF) is a popular and widely used method to accomplish this goal. But NMF do not have the provision to include the neighborhood structure information and, as a result, may fail to provide satisfactory performance in presence of nonlinear manifold structure. To address that shortcoming, we propose to consider and incorporate the neighborhood structural similarity information within the NMF framework by modeling the data through a minimum spanning tree. We label the resulting method as the neighborhood structure assisted NMF. We further devise both offline and online algorithm

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا