Do you want to publish a course? Click here

Learning Hidden Markov Models using Non-Negative Matrix Factorization

231   0   0.0 ( 0 )
 Added by Valentino Crespi
 Publication date 2011
and research's language is English




Ask ChatGPT about the research

The Baum-Welsh algorithm together with its derivatives and variations has been the main technique for learning Hidden Markov Models (HMM) from observational data. We present an HMM learning algorithm based on the non-negative matrix factorization (NMF) of higher order Markovian statistics that is structurally different from the Baum-Welsh and its associated approaches. The described algorithm supports estimation of the number of recurrent states of an HMM and iterates the non-negative matrix factorization (NMF) algorithm to improve the learned HMM parameters. Numerical examples are provided as well.



rate research

Read More

Hidden Markov Models (HMMs) are one of the most fundamental and widely used statistical tools for modeling discrete time series. In general, learning HMMs from data is computationally hard (under cryptographic assumptions), and practitioners typically resort to search heuristics which suffer from the usual local optima issues. We prove that under a natural separation condition (bounds on the smallest singular value of the HMM parameters), there is an efficient and provably correct algorithm for learning HMMs. The sample complexity of the algorithm does not explicitly depend on the number of distinct (discrete) observations---it implicitly depends on this quantity through spectral properties of the underlying HMM. This makes the algorithm particularly applicable to settings with a large number of observations, such as those in natural language processing where the space of observation is sometimes the words in a language. The algorithm is also simple, employing only a singular value decomposition and matrix multiplications.
The California Innocence Project (CIP), a clinical law school program aiming to free wrongfully convicted prisoners, evaluates thousands of mails containing new requests for assistance and corresponding case files. Processing and interpreting this large amount of information presents a significant challenge for CIP officials, which can be successfully aided by topic modeling techniques.In this paper, we apply Non-negative Matrix Factorization (NMF) method and implement various offshoots of it to the important and previously unstudied data set compiled by CIP. We identify underlying topics of existing case files and classify request files by crime type and case status (decision type). The results uncover the semantic structure of current case files and can provide CIP officials with a general understanding of newly received case files before further examinations. We also provide an exposition of popular variants of NMF with their experimental results and discuss the benefits and drawbacks of each variant through the real-world application.
Airborne gamma-ray surveys are useful for many applications, ranging from geology and mining to public health and nuclear security. In all these contexts, the ability to decompose a measured spectrum into a linear combination of background source terms can provide useful insights into the data and lead to improvements over techniques that use spectral energy windows. Multiple methods for the linear decomposition of spectra exist but are subject to various drawbacks, such as allowing negative photon fluxes or requiring detailed Monte Carlo modeling. We propose using Non-negative Matrix Factorization (NMF) as a data-driven approach to spectral decomposition. Using aerial surveys that include flights over water, we demonstrate that the mathematical approach of NMF finds physically relevant structure in aerial gamma-ray background, namely that measured spectra can be expressed as the sum of nearby terrestrial emission, distant terrestrial emission, and radon and cosmic emission. These NMF background components are compared to the background components obtained using Noise-Adjusted Singular Value Decomposition (NASVD), which contain negative photon fluxes and thus do not represent emission spectra in as straightforward a way. Finally, we comment on potential areas of research that are enabled by NMF decompositions, such as new approaches to spectral anomaly detection and data fusion.
Extracting genetic information from a full range of sequencing data is important for understanding diseases. We propose a novel method to effectively explore the landscape of genetic mutations and aggregate them to predict cancer type. We used multinomial logistic regression, nonsmooth non-negative matrix factorization (nsNMF), and support vector machine (SVM) to utilize the full range of sequencing data, aiming at better aggregating genetic mutations and improving their power in predicting cancer types. Specifically, we introduced a classifier to distinguish cancer types using somatic mutations obtained from whole-exome sequencing data. Mutations were identified from multiple cancers and scored using SIFT, PP2, and CADD, and grouped at the individual gene level. The nsNMF was then applied to reduce dimensionality and to obtain coefficient and basis matrices. A feature matrix was derived from the obtained matrices to train a classifier for cancer type classification with the SVM model. We have demonstrated that the classifier was able to distinguish the cancer types with reasonable accuracy. In five-fold cross-validations using mutation counts as features, the average prediction accuracy was 77.1% (SEM=0.1%), significantly outperforming baselines and outperforming models using mutation scores as features. Using the factor matrices derived from the nsNMF, we identified multiple genes and pathways that are significantly associated with each cancer type. This study presents a generic and complete pipeline to study the associations between somatic mutations and cancers. The discovered genes and pathways associated with each cancer type can lead to biological insights. The proposed method can be adapted to other studies for disease classification and pathway discovery.
Linear models have shown great effectiveness and flexibility in many fields such as machine learning, signal processing and statistics. They can represent rich spaces of functions while preserving the convexity of the optimization problems where they are used, and are simple to evaluate, differentiate and integrate. However, for modeling non-negative functions, which are crucial for unsupervised learning, density estimation, or non-parametric Bayesian methods, linear models are not applicable directly. Moreover, current state-of-the-art models like generalized linear models either lead to non-convex optimization problems, or cannot be easily integrated. In this paper we provide the first model for non-negative functions which benefits from the same good properties of linear models. In particular, we prove that it admits a representer theorem and provide an efficient dual formulation for convex problems. We study its representation power, showing that the resulting space of functions is strictly richer than that of generalized linear models. Finally we extend the model and the theoretical results to functions with outputs in convex cones. The paper is complemented by an experimental evaluation of the model showing its effectiveness in terms of formulation, algorithmic derivation and practical results on the problems of density estimation, regression with heteroscedastic errors, and multiple quantile regression.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا