No Arabic abstract
In this paper, we introduce a streaming keyphrase detection system that can be easily customized to accurately detect any phrase composed of words from a large vocabulary. The system is implemented with an end-to-end trained automatic speech recognition (ASR) model and a text-independent speaker verification model. To address the challenge of detecting these keyphrases under various noisy conditions, a speaker separation model is added to the feature frontend of the speaker verification model, and an adaptive noise cancellation (ANC) algorithm is included to exploit cross-microphone noise coherence. Our experiments show that the text-independent speaker verification model largely reduces the false triggering rate of the keyphrase detection, while the speaker separation model and adaptive noise cancellation largely reduce false rejections.
This paper proposes novel algorithms for speaker embedding using subjective inter-speaker similarity based on deep neural networks (DNNs). Although conventional DNN-based speaker embedding such as a $d$-vector can be applied to multi-speaker modeling in speech synthesis, it does not correlate with the subjective inter-speaker similarity and is not necessarily appropriate speaker representation for open speakers whose speech utterances are not included in the training data. We propose two training algorithms for DNN-based speaker embedding model using an inter-speaker similarity matrix obtained by large-scale subjective scoring. One is based on similarity vector embedding and trains the model to predict a vector of the similarity matrix as speaker representation. The other is based on similarity matrix embedding and trains the model to minimize the squared Frobenius norm between the similarity matrix and the Gram matrix of $d$-vectors, i.e., the inter-speaker similarity derived from the $d$-vectors. We crowdsourced the inter-speaker similarity scores of 153 Japanese female speakers, and the experimental results demonstrate that our algorithms learn speaker embedding that is highly correlated with the subjective similarity. We also apply the proposed speaker embedding to multi-speaker modeling in DNN-based speech synthesis and reveal that the proposed similarity vector embedding improves synthetic speech quality for open speakers whose speech utterances are unseen during the training.
Deep speaker embedding models have been commonly used as a building block for speaker diarization systems; however, the speaker embedding model is usually trained according to a global loss defined on the training data, which could be sub-optimal for distinguishing speakers locally in a specific meeting session. In this work we present the first use of graph neural networks (GNNs) for the speaker diarization problem, utilizing a GNN to refine speaker embeddings locally using the structural information between speech segments inside each session. The speaker embeddings extracted by a pre-trained model are remapped into a new embedding space, in which the different speakers within a single session are better separated. The model is trained for linkage prediction in a supervised manner by minimizing the difference between the affinity matrix constructed by the refined embeddings and the ground-truth adjacency matrix. Spectral clustering is then applied on top of the refined embeddings. We show that the clustering performance of the refined speaker embeddings outperforms the original embeddings significantly on both simulated and real meeting data, and our system achieves the state-of-the-art result on the NIST SRE 2000 CALLHOME database.
This work presents a novel approach for speaker diarization to leverage lexical information provided by automatic speech recognition. We propose a speaker diarization system that can incorporate word-level speaker turn probabilities with speaker embeddings into a speaker clustering process to improve the overall diarization accuracy. To integrate lexical and acoustic information in a comprehensive way during clustering, we introduce an adjacency matrix integration for spectral clustering. Since words and word boundary information for word-level speaker turn probability estimation are provided by a speech recognition system, our proposed method works without any human intervention for manual transcriptions. We show that the proposed method improves diarization performance on various evaluation datasets compared to the baseline diarization system using acoustic information only in speaker embeddings.
The goal of this paper is to adapt speaker embeddings for solving the problem of speaker diarisation. The quality of speaker embeddings is paramount to the performance of speaker diarisation systems. Despite this, prior works in the field have directly used embeddings designed only to be effective on the speaker verification task. In this paper, we propose three techniques that can be used to better adapt the speaker embeddings for diarisation: dimensionality reduction, attention-based embedding aggregation, and non-speech clustering. A wide range of experiments is performed on various challenging datasets. The results demonstrate that all three techniques contribute positively to the performance of the diarisation system achieving an average relative improvement of 25.07% in terms of diarisation error rate over the baseline.
Multi-speaker speech synthesis is a technique for modeling multiple speakers voices with a single model. Although many approaches using deep neural networks (DNNs) have been proposed, DNNs are prone to overfitting when the amount of training data is limited. We propose a framework for multi-speaker speech synthesis using deep Gaussian processes (DGPs); a DGP is a deep architecture of Bayesian kernel regressions and thus robust to overfitting. In this framework, speaker information is fed to duration/acoustic models using speaker codes. We also examine the use of deep Gaussian process latent variable models (DGPLVMs). In this approach, the representation of each speaker is learned simultaneously with other model parameters, and therefore the similarity or dissimilarity of speakers is considered efficiently. We experimentally evaluated two situations to investigate the effectiveness of the proposed methods. In one situation, the amount of data from each speaker is balanced (speaker-balanced), and in the other, the data from certain speakers are limited (speaker-imbalanced). Subjective and objective evaluation results showed that both the DGP and DGPLVM synthesize multi-speaker speech more effective than a DNN in the speaker-balanced situation. We also found that the DGPLVM outperforms the DGP significantly in the speaker-imbalanced situation.