Do you want to publish a course? Click here

Cross-Level Cross-Scale Cross-Attention Network for Point Cloud Representation

113   0   0.0 ( 0 )
 Added by Xian-Feng Han
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Self-attention mechanism recently achieves impressive advancement in Natural Language Processing (NLP) and Image Processing domains. And its permutation invariance property makes it ideally suitable for point cloud processing. Inspired by this remarkable success, we propose an end-to-end architecture, dubbed Cross-Level Cross-Scale Cross-Attention Network (CLCSCANet), for point cloud representation learning. First, a point-wise feature pyramid module is introduced to hierarchically extract features from different scales or resolutions. Then a cross-level cross-attention is designed to model long-range inter-level and intra-level dependencies. Finally, we develop a cross-scale cross-attention module to capture interactions between-and-within scales for representation enhancement. Compared with state-of-the-art approaches, our network can obtain competitive performance on challenging 3D object classification, point cloud segmentation tasks via comprehensive experimental evaluation.



rate research

Read More

Few-shot classification aims to recognize unlabeled samples from unseen classes given only few labeled samples. The unseen classes and low-data problem make few-shot classification very challenging. Many existing approaches extracted features from labeled and unlabeled samples independently, as a result, the features are not discriminative enough. In this work, we propose a novel Cross Attention Network to address the challenging problems in few-shot classification. Firstly, Cross Attention Module is introduced to deal with the problem of unseen classes. The module generates cross attention maps for each pair of class feature and query sample feature so as to highlight the target object regions, making the extracted feature more discriminative. Secondly, a transductive inference algorithm is proposed to alleviate the low-data problem, which iteratively utilizes the unlabeled query set to augment the support set, thereby making the class features more representative. Extensive experiments on two benchmarks show our method is a simple, effective and computationally efficient framework and outperforms the state-of-the-arts.
118 - Haobo Jiang , Yaqi Shen , Jin Xie 2021
In this paper, by modeling the point cloud registration task as a Markov decision process, we propose an end-to-end deep model embedded with the cross-entropy method (CEM) for unsupervised 3D registration. Our model consists of a sampling network module and a differentiable CEM module. In our sampling network module, given a pair of point clouds, the sampling network learns a prior sampling distribution over the transformation space. The learned sampling distribution can be used as a good initialization of the differentiable CEM module. In our differentiable CEM module, we first propose a maximum consensus criterion based alignment metric as the reward function for the point cloud registration task. Based on the reward function, for each state, we then construct a fused score function to evaluate the sampled transformations, where we weight the current and future rewards of the transformations. Particularly, the future rewards of the sampled transforms are obtained by performing the iterative closest point (ICP) algorithm on the transformed state. By selecting the top-k transformations with the highest scores, we iteratively update the sampling distribution. Furthermore, in order to make the CEM differentiable, we use the sparsemax function to replace the hard top-$k$ selection. Finally, we formulate a Geman-McClure estimator based loss to train our end-to-end registration model. Extensive experimental results demonstrate the good registration performance of our method on benchmark datasets.
With the rapid growth of multimedia data, such as image and text, it is a highly challenging problem to effectively correlate and retrieve the data of different media types. Naturally, when correlating an image with textual description, people focus on not only the alignment between discriminative image regions and key words, but also the relations lying in the visual and textual context. Relation understanding is essential for cross-media correlation learning, which is ignored by prior cross-media retrieval works. To address the above issue, we propose Cross-media Relation Attention Network (CRAN) with multi-level alignment. First, we propose visual-language relation attention model to explore both fine-grained patches and their relations of different media types. We aim to not only exploit cross-media fine-grained local information, but also capture the intrinsic relation information, which can provide complementary hints for correlation learning. Second, we propose cross-media multi-level alignment to explore global, local and relation alignments across different media types, which can mutually boost to learn more precise cross-media correlation. We conduct experiments on 2 cross-media datasets, and compare with 10 state-of-the-art methods to verify the effectiveness of proposed approach.
We present a novel facial expression recognition network, called Distract your Attention Network (DAN). Our method is based on two key observations. Firstly, multiple classes share inherently similar underlying facial appearance, and their differences could be subtle. Secondly, facial expressions exhibit themselves through multiple facial regions simultaneously, and the recognition requires a holistic approach by encoding high-order interactions among local features. To address these issues, we propose our DAN with three key components: Feature Clustering Network (FCN), Multi-head cross Attention Network (MAN), and Attention Fusion Network (AFN). The FCN extracts robust features by adopting a large-margin learning objective to maximize class separability. In addition, the MAN instantiates a number of attention heads to simultaneously attend to multiple facial areas and build attention maps on these regions. Further, the AFN distracts these attentions to multiple locations before fusing the attention maps to a comprehensive one. Extensive experiments on three public datasets (including AffectNet, RAF-DB, and SFEW 2.0) verified that the proposed method consistently achieves state-of-the-art facial expression recognition performance. Code will be made available at https://github.com/yaoing/DAN.
The recently developed vision transformer (ViT) has achieved promising results on image classification compared to convolutional neural networks. Inspired by this, in this paper, we study how to learn multi-scale feature representations in transformer models for image classification. To this end, we propose a dual-branch transformer to combine image patches (i.e., tokens in a transformer) of different sizes to produce stronger image features. Our approach processes small-patch and large-patch tokens with two separate branches of different computational complexity and these tokens are then fused purely by attention multiple times to complement each other. Furthermore, to reduce computation, we develop a simple yet effective token fusion module based on cross attention, which uses a single token for each branch as a query to exchange information with other branches. Our proposed cross-attention only requires linear time for both computational and memory complexity instead of quadratic time otherwise. Extensive experiments demonstrate that our approach performs better than or on par with several concurrent works on vision transformer, in addition to efficient CNN models. For example, on the ImageNet1K dataset, with some architectural changes, our approach outperforms the recent DeiT by a large margin of 2% with a small to moderate increase in FLOPs and model parameters. Our source codes and models are available at url{https://github.com/IBM/CrossViT}.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا