Do you want to publish a course? Click here

Cross-media Multi-level Alignment with Relation Attention Network

71   0   0.0 ( 0 )
 Added by Yuxin Peng
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

With the rapid growth of multimedia data, such as image and text, it is a highly challenging problem to effectively correlate and retrieve the data of different media types. Naturally, when correlating an image with textual description, people focus on not only the alignment between discriminative image regions and key words, but also the relations lying in the visual and textual context. Relation understanding is essential for cross-media correlation learning, which is ignored by prior cross-media retrieval works. To address the above issue, we propose Cross-media Relation Attention Network (CRAN) with multi-level alignment. First, we propose visual-language relation attention model to explore both fine-grained patches and their relations of different media types. We aim to not only exploit cross-media fine-grained local information, but also capture the intrinsic relation information, which can provide complementary hints for correlation learning. Second, we propose cross-media multi-level alignment to explore global, local and relation alignments across different media types, which can mutually boost to learn more precise cross-media correlation. We conduct experiments on 2 cross-media datasets, and compare with 10 state-of-the-art methods to verify the effectiveness of proposed approach.



rate research

Read More

Due to the severe lack of labeled data, existing methods of medical visual question answering usually rely on transfer learning to obtain effective image feature representation and use cross-modal fusion of visual and linguistic features to achieve question-related answer prediction. These two phases are performed independently and without considering the compatibility and applicability of the pre-trained features for cross-modal fusion. Thus, we reformulate image feature pre-training as a multi-task learning paradigm and witness its extraordinary superiority, forcing it to take into account the applicability of features for the specific image comprehension task. Furthermore, we introduce a cross-modal self-attention~(CMSA) module to selectively capture the long-range contextual relevance for more effective fusion of visual and linguistic features. Experimental results demonstrate that the proposed method outperforms existing state-of-the-art methods. Our code and models are available at https://github.com/haifangong/CMSA-MTPT-4-MedicalVQA.
Self-attention mechanism recently achieves impressive advancement in Natural Language Processing (NLP) and Image Processing domains. And its permutation invariance property makes it ideally suitable for point cloud processing. Inspired by this remarkable success, we propose an end-to-end architecture, dubbed Cross-Level Cross-Scale Cross-Attention Network (CLCSCANet), for point cloud representation learning. First, a point-wise feature pyramid module is introduced to hierarchically extract features from different scales or resolutions. Then a cross-level cross-attention is designed to model long-range inter-level and intra-level dependencies. Finally, we develop a cross-scale cross-attention module to capture interactions between-and-within scales for representation enhancement. Compared with state-of-the-art approaches, our network can obtain competitive performance on challenging 3D object classification, point cloud segmentation tasks via comprehensive experimental evaluation.
69 - Xin Huang , Yuxin Peng 2018
Cross-media retrieval is a research hotspot in multimedia area, which aims to perform retrieval across different media types such as image and text. The performance of existing methods usually relies on labeled data for model training. However, cross-media data is very labor consuming to collect and label, so how to transfer valuable knowledge in existing data to new data is a key problem towards application. For achieving the goal, this paper proposes deep cross-media knowledge transfer (DCKT) approach, which transfers knowledge from a large-scale cross-media dataset to promote the model training on another small-scale cross-media dataset. The main contributions of DCKT are: (1) Two-level transfer architecture is proposed to jointly minimize the media-level and correlation-level domain discrepancies, which allows two important and complementary aspects of knowledge to be transferred: intra-media semantic and inter-media correlation knowledge. It can enrich the training information and boost the retrieval accuracy. (2) Progressive transfer mechanism is proposed to iteratively select training samples with ascending transfer difficulties, via the metric of cross-media domain consistency with adaptive feedback. It can drive the transfer process to gradually reduce vast cross-media domain discrepancy, so as to enhance the robustness of model training. For verifying the effectiveness of DCKT, we take the largescale dataset XMediaNet as source domain, and 3 widelyused datasets as target domain for cross-media retrieval. Experimental results show that DCKT achieves promising improvement on retrieval accuracy.
Multimodal sentiment analysis has attracted increasing attention with broad application prospects. The existing methods focuses on single modality, which fails to capture the social media content for multiple modalities. Moreover, in multi-modal learning, most of the works have focused on simply combining the two modalities, without exploring the complicated correlations between them. This resulted in dissatisfying performance for multimodal sentiment classification. Motivated by the status quo, we propose a Deep Multi-Level Attentive network, which exploits the correlation between image and text modalities to improve multimodal learning. Specifically, we generate the bi-attentive visual map along the spatial and channel dimensions to magnify CNNs representation power. Then we model the correlation between the image regions and semantics of the word by extracting the textual features related to the bi-attentive visual features by applying semantic attention. Finally, self-attention is employed to automatically fetch the sentiment-rich multimodal features for the classification. We conduct extensive evaluations on four real-world datasets, namely, MVSA-Single, MVSA-Multiple, Flickr, and Getty Images, which verifies the superiority of our method.
Text alignment finds application in tasks such as citation recommendation and plagiarism detection. Existing alignment methods operate at a single, predefined level and cannot learn to align texts at, for example, sentence and document levels. We propose a new learning approach that equips previously established hierarchical attention encoders for representing documents with a cross-document attention component, enabling structural comparisons across different levels (document-to-document and sentence-to-document). Our component is weakly supervised from document pairs and can align at multiple levels. Our evaluation on predicting document-to-document relationships and sentence-to-document relationships on the tasks of citation recommendation and plagiarism detection shows that our approach outperforms previously established hierarchical, attention encoders based on recurrent and transformer contextualization that are unaware of structural correspondence between documents.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا