Do you want to publish a course? Click here

Alpha-decay spectroscopy of $^{257}$Rf

86   0   0.0 ( 0 )
 Added by Karl Hauschild
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The decay properties of the ground state and excited states of $^{257}$Rf have been investigated with the detector array GABRIELA at the FLNR, Dubna. The electromagnetic decay of a new excited state in $^{253}$No has been observed. The state lies 750 keV above the ground state and is favourably populated in the alpha decay of the low-lying spin isomer of $^{257}$Rf. It decays to the 9/2$^-$ ground state by an M1 transition and is assigned the 11/2$^-$[725] Nilsson configuration. The presence of this state suggests a possible reinterpretation of the decay of the high-K isomer in $^{253}$No.



rate research

Read More

Excited states of $^{129}$In populated following the $beta$-decay of $^{129}$Cd were experimentally studied with the GRIFFIN spectrometer at the ISAC facility of TRIUMF, Canada. A 480-MeV proton beam was impinged on a uranium carbide target and $^{129}$Cd was extracted using the Ion Guide Laser Ion Source (IG-LIS). $beta$- and $gamma$-rays following the decay of $^{129}$Cd were detected with the GRIFFIN spectrometer comprising the plastic scintillator SCEPTAR and 16 high-purity germanium (HPGe) clover-type detectors. %, along with the $beta$-particles were detected with SCEPTAR. From the $beta$-$gamma$-$gamma$ coincidence analysis, 32 new transitions and 7 new excited states were established, expanding the previously known level scheme of $^{129}$In. The $log ft$ values deduced from the $beta$-feeding intensities suggest that some of the high-lying states were populated by the $ u 0 g_{7/2} rightarrow pi 0 g_{9/2}$ allowed Gamow-Teller (GT) transition, which indicates that the allowed GT transition is more dominant in the $^{129}$Cd decay than previously reported. Observation of fragmented Gamow-Teller strengths is consistent with theoretical calculations.
98 - L. J. Sun , X. X. Xu , S. Q. Hou 2018
Background: Beta-decay spectroscopy provides valuable nuclear physics input for thermonuclear reaction rates of astrophysical interest and stringent test for shell-model theories far from the stability line. Purpose: The available decay properties of proton drip-line nucleus $^{27}$S is insufficient to constrain the properties of the key resonance in $^{26}$Si$(p,gamma)^{27}$P reaction rate and probe the possible isospin asymmetry. The decay scheme of $^{27}$S is complicated and far from being understood, which has motivated but also presented challenges for our experiment. Method: The $^{27}$S ions were implanted into a double-sided silicon strip detector array surrounded by the high-purity germanium detectors, where the $beta$-delayed protons and $gamma$ rays were measured simultaneously. Results: The improved spectroscopic properties including the precise half-life of $^{27}$S, the excitation energies, $beta$-decay branching ratios, log~$ft$ values, and $B$(GT) values for the states of $^{27}$P populated in the $beta$ decay of $^{27}$S were measured and compared to the $^{27}$Mg mirror states and the shell-model calculations. The present work has expanded greatly on the previously established decay scheme of $^{27}$S. Conclusions: The precise proton-separation energy of $^{27}$P, the energy and the ratio between $gamma$ and proton partial widths of the $3/2^+$ resonance were obtained, thereby determining the $^{26}$Si$(p,gamma)^{27}$P reaction rate based mainly on experimental constraints. The first evidence for the observation of a large isospin asymmetry for the mirror decays of $^{27}$S and $^{27}$Na is also provided. The experimental spectroscopic information can be reproduced by the shell-model calculation taking the weakly bound effect of the proton $1s_{1/2}$ orbit into account.
The natural alpha decay of 180W has been unambiguously detected for the first time. The alpha peak is found in a (gamma,beta and neutron)-free background spectrum. This has been achieved by the simultaneous measurement of phonon and light signals with the CRESST cryogenic detectors. A half-life of T1/2 = (1.8 +- 0.2) x 10^18 y and an energy release of Q = (2516.4 +- 1.1 (stat.) +- 1.2 (sys.)) keV have been measured. New limits are also set on the half-lives of the other naturally occurring tungsten isotopes.
$beta$-decay spectroscopy provides valuable information on exotic nuclei and a stringent test for nuclear theories beyond the stability line. To search for new $beta$-delayed protons and $gamma$ rays of $^{25}$Si to investigate the properties of $^{25}$Al excited states. $^{25}$Si $beta$ decays were measured by using the Gaseous Detector with Germanium Tagging system at the National Superconducting Cyclotron Laboratory. The protons and $gamma$ rays emitted in the decay were detected simultaneously. A Monte Carlo method was used to model the Doppler broadening of $^{24}$Mg $gamma$-ray lines caused by nuclear recoil from proton emission. Shell-model calculations using two newly developed universal textit{sd}-shell Hamiltonians, USDC and USDI, were performed. The most precise $^{25}$Si half-life to date has been determined. A new proton branch at 724(4)~keV and new proton-$gamma$-ray coincidences have been identified. Three $^{24}$Mg $gamma$-ray lines and eight $^{25}$Al $gamma$-ray lines are observed for the first time in $^{25}$Si decay. The first measurement of the $^{25}$Si $beta$-delayed $gamma$ ray intensities through the $^{25}$Al unbound states is reported. All the bound states of $^{25}$Al are observed to be populated in the $beta$ decay of $^{25}$Si. Several inconsistencies between the previous measurements have been resolved, and new information on the $^{25}$Al level scheme is provided. An enhanced decay scheme has been constructed and compared to the mirror decay of $^{25}$Na and the shell-model calculations. The measured excitation energies, $gamma$-ray and proton branchings, log~$ft$ values, and Gamow-Teller transition strengths for the states of $^{25}$Al populated in the $beta$ decay of $^{25}$Si are in good agreement with the shell-model calculations, offering gratifyingly consistent insights into the fine nuclear structure of $^{25}$Al.
106 - M.D. Sun , Z. Liu , T.H. Huang 2019
Fine structure in the $alpha$ decay of $^{223}$U was observed in the fusion-evaporation reaction $^{187}$Re($^{40}$Ar, p3n) by using fast digital pulse processing technique. Two $alpha$-decay branches of $^{223}$U feeding the ground state and 244 keV excited state of $^{219}$Th were identified by establishing the decay chain $^{223}$U $xrightarrow{alpha_{1}}$ $^{219}$Th $xrightarrow{alpha_{2}}$ $^{215}$Ra $xrightarrow{alpha_{3}}$ $^{211}$Rn. The $alpha$-particle energy for the ground-state to ground-state transition of $^{223}$U was determined to be 8993(17) keV, 213 keV higher than the previous value, the half-life was updated to be 62$^{+14}_{-10}$ $mu$s. Evolution of nuclear structure for $N$ = 131 even-$Z$ isotones from Po to U was discussed in the frameworks of nuclear mass and reduced $alpha$-decay width, a weakening octupole deformation in the ground state of $^{223}$U relative to its lighter isotones $^{219}$Ra and $^{221}$Th was suggested.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا