Do you want to publish a course? Click here

Distractor-Aware Fast Tracking via Dynamic Convolutions and MOT Philosophy

98   0   0.0 ( 0 )
 Added by Zikai Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

A practical long-term tracker typically contains three key properties, i.e. an efficient model design, an effective global re-detection strategy and a robust distractor awareness mechanism. However, most state-of-the-art long-term trackers (e.g., Pseudo and re-detecting based ones) do not take all three key properties into account and therefore may either be time-consuming or drift to distractors. To address the issues, we propose a two-task tracking frame work (named DMTrack), which utilizes two core components (i.e., one-shot detection and re-identification (re-id) association) to achieve distractor-aware fast tracking via Dynamic convolutions (d-convs) and Multiple object tracking (MOT) philosophy. To achieve precise and fast global detection, we construct a lightweight one-shot detector using a novel dynamic convolutions generation method, which provides a unified and more flexible way for fusing target information into the search field. To distinguish the target from distractors, we resort to the philosophy of MOT to reason distractors explicitly by maintaining all potential similarities tracklets. Benefited from the strength of high recall detection and explicit object association, our tracker achieves state-of-the-art performance on the LaSOT, OxUvA, TLP, VOT2018LT and VOT2019LT benchmarks and runs in real-time (3x faster than comparisons).



rate research

Read More

374 - Weitao Feng , Zhihao Hu , Baopu Li 2020
Multi-Object Tracking (MOT) is a popular topic in computer vision. However, identity issue, i.e., an object is wrongly associated with another object of a different identity, still remains to be a challenging problem. To address it, switchers, i.e., confusing targets thatmay cause identity issues, should be focused. Based on this motivation,this paper proposes a novel switcher-aware framework for multi-object tracking, which consists of Spatial Conflict Graph model (SCG) and Switcher-Aware Association (SAA). The SCG eliminates spatial switch-ers within one frame by building a conflict graph and working out the optimal subgraph. The SAA utilizes additional information from potential temporal switcher across frames, enabling more accurate data association. Besides, we propose a new MOT evaluation measure, Still Another IDF score (SAIDF), aiming to focus more on identity issues.This new measure may overcome some problems of the previous measures and provide a better insight for identity issues in MOT. Finally,the proposed framework is tested under both the traditional measures and the new measure we proposed. Extensive experiments show that ourmethod achieves competitive results on all measure.
Multiple object tracking (MOT) is a crucial task in computer vision society. However, most tracking-by-detection MOT methods, with available detected bounding boxes, cannot effectively handle static, slow-moving and fast-moving camera scenarios simultaneously due to ego-motion and frequent occlusion. In this work, we propose a novel tracking framework, called instance-aware MOT (IA-MOT), that can track multiple objects in either static or moving cameras by jointly considering the instance-level features and object motions. First, robust appearance features are extracted from a variant of Mask R-CNN detector with an additional embedding head, by sending the given detections as the region proposals. Meanwhile, the spatial attention, which focuses on the foreground within the bounding boxes, is generated from the given instance masks and applied to the extracted embedding features. In the tracking stage, object instance masks are aligned by feature similarity and motion consistency using the Hungarian association algorithm. Moreover, object re-identification (ReID) is incorporated to recover ID switches caused by long-term occlusion or missing detection. Overall, when evaluated on the MOTS20 and KITTI-MOTS dataset, our proposed method won the first place in Track 3 of the BMTT Challenge in CVPR2020 workshops.
Visual tracking can be easily disturbed by similar surrounding objects. Such objects as hard distractors, even though being the minority among negative samples, increase the risk of target drift and model corruption, which deserve additional attention in online tracking and model update. To enhance the tracking robustness, in this paper, we propose a cascaded regression tracker with two sequential stages. In the first stage, we filter out abundant easily-identified negative candidates via an efficient convolutional regression. In the second stage, a discrete sampling based ridge regression is designed to double-check the remaining ambiguous hard samples, which serves as an alternative of fully-connected layers and benefits from the closed-form solver for efficient learning. Extensive experiments are conducted on 11 challenging tracking benchmarks including OTB-2013, OTB-2015, VOT2018, VOT2019, UAV123, Temple-Color, NfS, TrackingNet, LaSOT, UAV20L, and OxUvA. The proposed method achieves state-of-the-art performance on prevalent benchmarks, while running in a real-time speed.
We propose a fully convolutional multi-person pose estimation framework using dynamic instance-aware convolutions, termed FCPose. Different from existing methods, which often require ROI (Region of Interest) operations and/or grouping post-processing, FCPose eliminates the ROIs and grouping post-processing with dynamic instance-aware keypoint estimation heads. The dynamic keypoint heads are conditioned on each instance (person), and can encode the instance concept in the dynamically-generated weights of their filters. Moreover, with the strong representation capacity of dynamic convolutions, the keypoint heads in FCPose are designed to be very compact, resulting in fast inference and making FCPose have almost constant inference time regardless of the number of persons in the image. For example, on the COCO dataset, a real-time version of FCPose using the DLA-34 backbone infers about 4.5x faster than Mask R-CNN (ResNet-101) (41.67 FPS vs. 9.26FPS) while achieving improved performance. FCPose also offers better speed/accuracy trade-off than other state-of-the-art methods. Our experiment results show that FCPose is a simple yet effective multi-person pose estimation framework. Code is available at: https://git.io/AdelaiDet
Many RGB-T trackers attempt to attain robust feature representation by utilizing an adaptive weighting scheme (or attention mechanism). Different from these works, we propose a new dynamic modality-aware filter generation module (named MFGNet) to boost the message communication between visible and thermal data by adaptively adjusting the convolutional kernels for various input images in practical tracking. Given the image pairs as input, we first encode their features with the backbone network. Then, we concatenate these feature maps and generate dynamic modality-aware filters with two independent networks. The visible and thermal filters will be used to conduct a dynamic convolutional operation on their corresponding input feature maps respectively. Inspired by residual connection, both the generated visible and thermal feature maps will be summarized with input feature maps. The augmented feature maps will be fed into the RoI align module to generate instance-level features for subsequent classification. To address issues caused by heavy occlusion, fast motion, and out-of-view, we propose to conduct a joint local and global search by exploiting a new direction-aware target-driven attention mechanism. The spatial and temporal recurrent neural network is used to capture the direction-aware context for accurate global attention prediction. Extensive experiments on three large-scale RGB-T tracking benchmark datasets validated the effectiveness of our proposed algorithm. The project page of this paper is available at https://sites.google.com/view/mfgrgbttrack/.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا