Do you want to publish a course? Click here

Cascaded Regression Tracking: Towards Online Hard Distractor Discrimination

53   0   0.0 ( 0 )
 Added by Ning Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Visual tracking can be easily disturbed by similar surrounding objects. Such objects as hard distractors, even though being the minority among negative samples, increase the risk of target drift and model corruption, which deserve additional attention in online tracking and model update. To enhance the tracking robustness, in this paper, we propose a cascaded regression tracker with two sequential stages. In the first stage, we filter out abundant easily-identified negative candidates via an efficient convolutional regression. In the second stage, a discrete sampling based ridge regression is designed to double-check the remaining ambiguous hard samples, which serves as an alternative of fully-connected layers and benefits from the closed-form solver for efficient learning. Extensive experiments are conducted on 11 challenging tracking benchmarks including OTB-2013, OTB-2015, VOT2018, VOT2019, UAV123, Temple-Color, NfS, TrackingNet, LaSOT, UAV20L, and OxUvA. The proposed method achieves state-of-the-art performance on prevalent benchmarks, while running in a real-time speed.



rate research

Read More

A practical long-term tracker typically contains three key properties, i.e. an efficient model design, an effective global re-detection strategy and a robust distractor awareness mechanism. However, most state-of-the-art long-term trackers (e.g., Pseudo and re-detecting based ones) do not take all three key properties into account and therefore may either be time-consuming or drift to distractors. To address the issues, we propose a two-task tracking frame work (named DMTrack), which utilizes two core components (i.e., one-shot detection and re-identification (re-id) association) to achieve distractor-aware fast tracking via Dynamic convolutions (d-convs) and Multiple object tracking (MOT) philosophy. To achieve precise and fast global detection, we construct a lightweight one-shot detector using a novel dynamic convolutions generation method, which provides a unified and more flexible way for fusing target information into the search field. To distinguish the target from distractors, we resort to the philosophy of MOT to reason distractors explicitly by maintaining all potential similarities tracklets. Benefited from the strength of high recall detection and explicit object association, our tracker achieves state-of-the-art performance on the LaSOT, OxUvA, TLP, VOT2018LT and VOT2019LT benchmarks and runs in real-time (3x faster than comparisons).
We propose to learn a cascade of globally-optimized modular boosted ferns (GoMBF) to solve multi-modal facial motion regression for real-time 3D facial tracking from a monocular RGB camera. GoMBF is a deep composition of multiple regression models with each is a boosted ferns initially trained to predict partial motion parameters of the same modality, and then concatenated together via a global optimization step to form a singular strong boosted ferns that can effectively handle the whole regression target. It can explicitly cope with the modality variety in output variables, while manifesting increased fitting power and a faster learning speed comparing against the conventional boosted ferns. By further cascading a sequence of GoMBFs (GoMBF-Cascade) to regress facial motion parameters, we achieve competitive tracking performance on a variety of in-the-wild videos comparing to the state-of-the-art methods, which require much more training data or have higher computational complexity. It provides a robust and highly elegant solution to real-time 3D facial tracking using a small set of training data and hence makes it more practical in real-world applications.
Accurate tracking is still a challenging task due to appearance variations, pose and view changes, and geometric deformations of target in videos. Recent anchor-free trackers provide an efficient regression mechanism but fail to produce precise bounding box estimation. To address these issues, this paper repurposes a Transformer-alike regression branch, termed as Target Transformed Regression (TREG), for accurate anchor-free tracking. The core to our TREG is to model pair-wise relation between elements in target template and search region, and use the resulted target enhanced visual representation for accurate bounding box regression. This target contextualized representation is able to enhance the target relevant information to help precisely locate the box boundaries, and deal with the object deformation to some extent due to its local and dense matching mechanism. In addition, we devise a simple online template update mechanism to select reliable templates, increasing the robustness for appearance variations and geometric deformations of target in time. Experimental results on visual tracking benchmarks including VOT2018, VOT2019, OTB100, GOT10k, NFS, UAV123, LaSOT and TrackingNet demonstrate that TREG obtains the state-of-the-art performance, achieving a success rate of 0.640 on LaSOT, while running at around 30 FPS. The code and models will be made available at https://github.com/MCG-NJU/TREG.
Multi-person articulated pose tracking in unconstrained videos is an important while challenging problem. In this paper, going along the road of top-down approaches, we propose a decent and efficient pose tracker based on pose flows. First, we design an online optimization framework to build the association of cross-frame poses and form pose flows (PF-Builder). Second, a novel pose flow non-maximum suppression (PF-NMS) is designed to robustly reduce redundant pose flows and re-link temporal disjoint ones. Extensive experiments show that our method significantly outperforms best-reported results on two standard Pose Tracking datasets by 13 mAP 25 MOTA and 6 mAP 3 MOTA respectively. Moreover, in the case of working on detected poses in individual frames, the extra computation of pose tracker is very minor, guaranteeing online 10FPS tracking. Our source codes are made publicly available(https://github.com/YuliangXiu/PoseFlow).
146 - Shen Li , Bingpeng Ma , Hong Chang 2021
This paper proposes a novel model, named Continuity-Discrimination Convolutional Neural Network (CD-CNN), for visual object tracking. Existing state-of-the-art tracking methods do not deal with temporal relationship in video sequences, which leads to imperfect feature representations. To address this problem, CD-CNN models temporal appearance continuity based on the idea of temporal slowness. Mathematically, we prove that, by introducing temporal appearance continuity into tracking, the upper bound of target appearance representation error can be sufficiently small with high probability. Further, in order to alleviate inaccurate target localization and drifting, we propose a novel notion, object-centroid, to characterize not only objectness but also the relative position of the target within a given patch. Both temporal appearance continuity and object-centroid are jointly learned during offline training and then transferred for online tracking. We evaluate our tracker through extensive experiments on two challenging benchmarks and show its competitive tracking performance compared with state-of-the-art trackers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا