No Arabic abstract
Channel Pruning has been long studied to compress CNNs for efficient image classification. Prior works implement channel pruning in an unexplainable manner, which tends to reduce the final classification errors while failing to consider the internal influence of each channel. In this paper, we conduct channel pruning in a white box. Through deep visualization of feature maps activated by different channels, we observe that different channels have a varying contribution to different categories in image classification. Inspired by this, we choose to preserve channels contributing to most categories. Specifically, to model the contribution of each channel to differentiating categories, we develop a class-wise mask for each channel, implemented in a dynamic training manner w.r.t. the input images category. On the basis of the learned class-wise mask, we perform a global voting mechanism to remove channels with less category discrimination. Lastly, a fine-tuning process is conducted to recover the performance of the pruned model. To our best knowledge, it is the first time that CNN interpretability theory is considered to guide channel pruning. Extensive experiments on representative image classification tasks demonstrate the superiority of our White-Box over many state-of-the-arts. For instance, on CIFAR-10, it reduces 65.23% FLOPs with even 0.62% accuracy improvement for ResNet-110. On ILSVRC-2012, White-Box achieves a 45.6% FLOPs reduction with only a small loss of 0.83% in the top-1 accuracy for ResNet-50.
Channel pruning is a promising technique to compress the parameters of deep convolutional neural networks(DCNN) and to speed up the inference. This paper aims to address the long-standing inefficiency of channel pruning. Most channel pruning methods recover the prediction accuracy by re-training the pruned model from the remaining parameters or random initialization. This re-training process is heavily dependent on the sufficiency of computational resources, training data, and human interference(tuning the training strategy). In this paper, a highly efficient pruning method is proposed to significantly reduce the cost of pruning DCNN. The main contributions of our method include: 1) pruning compensation, a fast and data-efficient substitute of re-training to minimize the post-pruning reconstruction loss of features, 2) compensation-aware pruning(CaP), a novel pruning algorithm to remove redundant or less-weighted channels by minimizing the loss of information, and 3) binary structural search with step constraint to minimize human interference. On benchmarks including CIFAR-10/100 and ImageNet, our method shows competitive pruning performance among the state-of-the-art retraining-based pruning methods and, more importantly, reduces the processing time by 95% and data usage by 90%.
In this work, we propose a new layer-by-layer channel pruning method called Channel Pruning guided by classification Loss and feature Importance (CPLI). In contrast to the existing layer-by-layer channel pruning approaches that only consider how to reconstruct the features from the next layer, our approach additionally take the classification loss into account in the channel pruning process. We also observe that some reconstructed features will be removed at the next pruning stage. So it is unnecessary to reconstruct these features. To this end, we propose a new strategy to suppress the influence of unimportant features (i.e., the features will be removed at the next pruning stage). Our comprehensive experiments on three benchmark datasets, i.e., CIFAR-10, ImageNet, and UCF-101, demonstrate the effectiveness of our CPLI method.
The loss function is a key component in deep learning models. A commonly used loss function for classification is the cross entropy loss, which is a simple yet effective application of information theory for classification problems. Based on this loss, many other loss functions have been proposed,~emph{e.g.}, by adding intra-class and inter-class constraints to enhance the discriminative ability of the learned features. However, these loss functions fail to consider the connections between the feature distribution and the model structure. Aiming at addressing this problem, we propose a channel correlation loss (CC-Loss) that is able to constrain the specific relations between classes and channels as well as maintain the intra-class and the inter-class separability. CC-Loss uses a channel attention module to generate channel attention of features for each sample in the training stage. Next, an Euclidean distance matrix is calculated to make the channel attention vectors associated with the same class become identical and to increase the difference between different classes. Finally, we obtain a feature embedding with good intra-class compactness and inter-class separability.Experimental results show that two different backbone models trained with the proposed CC-Loss outperform the state-of-the-art loss functions on three image classification datasets.
In an effort to interpret black-box models, researches for developing explanation methods have proceeded in recent years. Most studies have tried to identify input pixels that are crucial to the prediction of a classifier. While this approach is meaningful to analyse the characteristic of blackbox models, it is also important to investigate pixels that interfere with the prediction. To tackle this issue, in this paper, we propose an explanation method that visualizes undesirable regions to classify an image as a target class. To be specific, we divide the concept of undesirable regions into two terms: (1) factors for a target class, which hinder that black-box models identify intrinsic characteristics of a target class and (2) factors for non-target classes that are important regions for an image to be classified as other classes. We visualize such undesirable regions on heatmaps to qualitatively validate the proposed method. Furthermore, we present an evaluation metric to provide quantitative results on ImageNet.
We study the query-based attack against image retrieval to evaluate its robustness against adversarial examples under the black-box setting, where the adversary only has query access to the top-k ranked unlabeled images from the database. Compared with query attacks in image classification, which produce adversaries according to the returned labels or confidence score, the challenge becomes even more prominent due to the difficulty in quantifying the attack effectiveness on the partial retrieved list. In this paper, we make the first attempt in Query-based Attack against Image Retrieval (QAIR), to completely subvert the top-k retrieval results. Specifically, a new relevance-based loss is designed to quantify the attack effects by measuring the set similarity on the top-k retrieval results before and after attacks and guide the gradient optimization. To further boost the attack efficiency, a recursive model stealing method is proposed to acquire transferable priors on the target model and generate the prior-guided gradients. Comprehensive experiments show that the proposed attack achieves a high attack success rate with few queries against the image retrieval systems under the black-box setting. The attack evaluations on the real-world visual search engine show that it successfully deceives a commercial system such as Bing Visual Search with 98% attack success rate by only 33 queries on average.