No Arabic abstract
The loss function is a key component in deep learning models. A commonly used loss function for classification is the cross entropy loss, which is a simple yet effective application of information theory for classification problems. Based on this loss, many other loss functions have been proposed,~emph{e.g.}, by adding intra-class and inter-class constraints to enhance the discriminative ability of the learned features. However, these loss functions fail to consider the connections between the feature distribution and the model structure. Aiming at addressing this problem, we propose a channel correlation loss (CC-Loss) that is able to constrain the specific relations between classes and channels as well as maintain the intra-class and the inter-class separability. CC-Loss uses a channel attention module to generate channel attention of features for each sample in the training stage. Next, an Euclidean distance matrix is calculated to make the channel attention vectors associated with the same class become identical and to increase the difference between different classes. Finally, we obtain a feature embedding with good intra-class compactness and inter-class separability.Experimental results show that two different backbone models trained with the proposed CC-Loss outperform the state-of-the-art loss functions on three image classification datasets.
Softmax loss is arguably one of the most popular losses to train CNN models for image classification. However, recent works have exposed its limitation on feature discriminability. This paper casts a new viewpoint on the weakness of softmax loss. On the one hand, the CNN features learned using the softmax loss are often inadequately discriminative. We hence introduce a soft-margin softmax function to explicitly encourage the discrimination between different classes. On the other hand, the learned classifier of softmax loss is weak. We propose to assemble multiple these weak classifiers to a strong one, inspired by the recognition that the diversity among weak classifiers is critical to a good ensemble. To achieve the diversity, we adopt the Hilbert-Schmidt Independence Criterion (HSIC). Considering these two aspects in one framework, we design a novel loss, named as Ensemble soft-Margin Softmax (EM-Softmax). Extensive experiments on benchmark datasets are conducted to show the superiority of our design over the baseline softmax loss and several state-of-the-art alternatives.
The development of deep convolutional neural network architecture is critical to the improvement of image classification task performance. A lot of studies of image classification based on deep convolutional neural network focus on the network structure to improve the image classification performance. Contrary to these studies, we focus on the loss function. Cross-entropy Loss (CEL) is widely used for training a multi-class classification deep convolutional neural network. While CEL has been successfully implemented in image classification tasks, it only focuses on the posterior probability of correct class when the labels of training images are one-hot. It cannot be discriminated against the classes not belong to correct class (wrong classes) directly. In order to solve the problem of CEL, we propose Competing Ratio Loss (CRL), which calculates the posterior probability ratio between the correct class and competing wrong classes to better discriminate the correct class from competing wrong classes, increasing the difference between the negative log likelihood of the correct class and the negative log likelihood of competing wrong classes, widening the difference between the probability of the correct class and the probabilities of wrong classes. To demonstrate the effectiveness of our loss function, we perform some sets of experiments on different types of image classification datasets, including CIFAR, SVHN, CUB200- 2011, Adience and ImageNet datasets. The experimental results show the effectiveness and robustness of our loss function on different deep convolutional neural network architectures and different image classification tasks, such as fine-grained image classification, hard face age estimation and large-scale image classification.
The development of deep convolutional neural network architecture is critical to the improvement of image classification task performance. Many image classification studies use deep convolutional neural network and focus on modifying the network structure to improve image classification performance. Conversely, our study focuses on loss function design. Cross-entropy Loss (CEL) has been widely used for training deep convolutional neural network for the task of multi-class classification. Although CEL has been successfully implemented in several image classification tasks, it only focuses on the posterior probability of the correct class. For this reason, a negative log likelihood ratio loss (NLLR) was proposed to better differentiate between the correct class and the competing incorrect ones. However, during the training of the deep convolutional neural network, the value of NLLR is not always positive or negative, which severely affects the convergence of NLLR. Our proposed competing ratio loss (CRL) calculates the posterior probability ratio between the correct class and the competing incorrect classes to further enlarge the probability difference between the correct and incorrect classes. We added hyperparameters to CRL, thereby ensuring its value to be positive and that the update size of backpropagation is suitable for the CRLs fast convergence. To demonstrate the performance of CRL, we conducted experiments on general image classification tasks (CIFAR10/100, SVHN, ImageNet), the fine-grained image classification tasks (CUB200-2011 and Stanford Car), and the challenging face age estimation task (using Adience). Experimental results show the effectiveness and robustness of the proposed loss function on different deep convolutional neural network architectures and different image classification tasks.
We propose a large-margin Gaussian Mixture (L-GM) loss for deep neural networks in classification tasks. Different from the softmax cross-entropy loss, our proposal is established on the assumption that the deep features of the training set follow a Gaussian Mixture distribution. By involving a classification margin and a likelihood regularization, the L-GM loss facilitates both a high classification performance and an accurate modeling of the training feature distribution. As such, the L-GM loss is superior to the softmax loss and its major variants in the sense that besides classification, it can be readily used to distinguish abnormal inputs, such as the adversarial examples, based on their features likelihood to the training feature distribution. Extensive experiments on various recognition benchmarks like MNIST, CIFAR, ImageNet and LFW, as well as on adversarial examples demonstrate the effectiveness of our proposal.
In this work, we propose a new layer-by-layer channel pruning method called Channel Pruning guided by classification Loss and feature Importance (CPLI). In contrast to the existing layer-by-layer channel pruning approaches that only consider how to reconstruct the features from the next layer, our approach additionally take the classification loss into account in the channel pruning process. We also observe that some reconstructed features will be removed at the next pruning stage. So it is unnecessary to reconstruct these features. To this end, we propose a new strategy to suppress the influence of unimportant features (i.e., the features will be removed at the next pruning stage). Our comprehensive experiments on three benchmark datasets, i.e., CIFAR-10, ImageNet, and UCF-101, demonstrate the effectiveness of our CPLI method.