Do you want to publish a course? Click here

Spatial shifts in productivity of the coastal ocean over the past two decades induced by migration of the Pacific Anticyclone and Bakun effect in the Humboldt Upwelling Ecosystem

419   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Intensification and poleward expansion of upwelling favourable winds have been predicted as a response to anthropogenic global climate change and have recently been documented in most Eastern Boundary Upwelling Ecosystems of the world. To identify how these processes are impacting nearshore oceanographic habitats and, especially, long term trends of primary productivity in the Humboldt Upwelling Ecosystem (HUE), we analysed time series of sea level pressure, wind stress, sea surface and atmospheric surface temperatures, and Chlorophyll-a, as a proxy for primary productivity, along 26{deg} - 36{deg} S. We show that climate induced trends in primary productivity are highly heterogeneous across the region. On the one hand, the well documented poleward migration of the South Pacific Anticyclone (SPA) has led to decreased spring upwelling winds in the region between ca. 30{deg} and 34{deg} S, and to their intensification to the south. Decreased winds have produced slight increases in sea surface temperature and a pronounced and meridionally extensive decrease in surface Chlorophyll-a in this region of central Chile. To the north of 30{deg} S, significant increases in upwelling winds, decreased SST, and enhanced Chlorophyll-a concentration are observed in the nearshore. We show that this increased in upwelling driven coastal productivity is probably produced by the increased land-sea pressure gradients (Bakuns effect) that have occurred over the past two decades north of 30{deg} S. Thus, climate drivers along the HUE are inducing contrasting trends in oceanographic conditions and primary productivity, which can have far-reaching consequences for coastal pelagic and benthic ecosystems and lead to geographic displacements of the major fisheries.



rate research

Read More

Sea surface height anomalies observed by satellites in 1993--2012 are combined with simulation and observations by surface drifters and Argo floats to study water flow pattern in the Near Strait (NS) connected the Pacific Ocean with the Bering Sea. Daily Lagrangian latitudinal maps, computed with the AVISO surface velocity field, and calculation of the transport across the strait show that the flow through the NS is highly variable and controlled by mesoscale and submesoscale eddies in the area. On the seasonal scale, the flux through the western part of the NR is negatively correlated with the flux through its eastern part ($r=-0.93$). On the interannual time scale, a significant positive correlation ($r=0.72$) is diagnosed between the NS transport and the wind stress in winter. Increased southward component of the wind stress decreases the northward water transport through the strait. Positive wind stress curl over the strait area in winter--spring generates the cyclonic circulation and thereby enhances the southward flow in the western part ($r=-0.68$) and northward flow in the eastern part ($r=0.61$) of the NR. In fall, the water transport in different parts of the NS is determined by the strength of the anticyclonic mesoscale eddy located in the Alaskan Stream area.
Sedimentation of particles in the ocean leads to inhomogeneous horizontal distributions at depth, even if the release process is homogeneous. We study this phenomenon considering a horizontal sheet of sinking particles immersed in an oceanic flow, and determine how the particles are distributed when they sediment on the seabed (or are collected at a given depth). The study is performed from a Lagrangian viewpoint attending to the properties of the oceanic flow and the physical characteristics (size and density) of typical biogenic sinking particles. Two main processes determine the distribution, the stretching of the sheet caused by the flow and its projection on the surface where particles accumulate. These mechanisms are checked, besides an analysis of their relative importance to produce inhomogeneities, with numerical experiments in the Benguela region. Faster (heavier or larger) sinking particles distribute more homogeneously than slower ones.
171 - M. Agostini , M. Bohmer , J. Bosma 2020
The Pacific Ocean Neutrino Experiment (P-ONE) is a new initiative with a vision towards constructing a multi-cubic kilometre neutrino telescope, to expand our observable window of the Universe to highest energies, installed within the deep Pacific Ocean underwater infrastructure of Ocean Networks Canada.
Dissolved manganese (Mn) is a biologically essential element, and its oxidised form is involved in the removal of trace elements from ocean waters. Recently, a large number of highly accurate Mn measurements have been obtained in the Atlantic, Indian and Arctic Oceans as part of the GEOTRACES programme. The goal of this study is to combine these new observations with state-of-the-art modelling to give new insights into the main sources and redistribution of Mn throughout the ocean. To this end, we simulate the distribution of dissolved Mn using a global-scale circulation model. This first model includes simple parameterisations to account, realistically, for the sources, processes and sinks of Mn in the ocean. Whereas oxidation and (photo)reduction, as well as aggregation and settling are parameterised in the model, biological uptake is not yet taken into account by the model. Our model reproduces observations accurately and provides the following insights: - The high surface concentrations of manganese are caused by the combination of photoreduction and sources to the upper ocean. The most important sources are dust, then sediments, and, more locally, rivers. - Results show that surface Mn in the Atlantic Ocean moves downwards into the North Atlantic Deep Water, but because of strong removal rates the Mn does not propagate southwards. - There is a mostly homogeneous background concentration of dissolved Mn of about 0.10 to 0.15 nM throughout most of the deep ocean. The model reproduces this by means of a threshold on manganese oxides of 25 pM, suggesting that a minimal concentration of Mn is needed before aggregation and removal become efficient. - The observed sharp hydrothermal signals are produced by assuming both a high source and a strong removal of Mn near hydrothermal vents.
152 - S.V. Prants 2015
Dynamical systems theory approach has been successfully used in physical oceanography for the last two decades to study mixing and transport of water masses in the ocean. The basic theoretical ideas have been borrowed from the phenomenon of chaotic advection in fluids, an analogue of dynamical Hamiltonian chaos in mechanics. The starting point for analysis is a velocity field obtained by this or that way. Being motivated by successful applications of that approach to simplified analytic models of geophysical fluid flows, researchers now work with satellite-derived velocity fields and outputs of sophisticated numerical models of ocean circulation. This review article gives an introduction to some of the basic concepts and methods used to study chaotic mixing and transport in the ocean and a brief overview of recent results with some practical applications of Lagrangian tools to monitor spreading of Fukushima-derived radionuclides in the ocean.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا