No Arabic abstract
We study scalar-tensor theories of gravity which satisfies the strong equivalence principle: the independence of the motion of a self-gravitating body from its internal structure. By solving $eta=4beta-gamma-3=0$ for the coupling function $omega(Phi)$, such a theory is obtained which is different from general relativity and is known as constant-$G$ theory. The theory has peculiar features: the coupling function asymptotes to a conformal coupling ($omegarightarrow -3/2$) for large $Phi$ and the theory is cosmologically attracted toward the conformal coupling.
Spontaneous scalarization is a mechanism that endows relativistic stars and black holes with a nontrivial configuration only when their spacetime curvature exceeds some threshold. The standard way to trigger spontaneous scalarization is via a tachyonic instability at the linear level, which is eventually quenched due to the effect of non-linear terms. In this paper, we identify all of the terms in the Horndeski action that contribute to the (effective) mass term in the linearized equations and, hence, can cause or contribute to the tachyonic instability that triggers scalarization.
The recent LIGO detection of gravitational waves from black-hole binaries offers the exciting possibility of testing gravitational theories in the previously inaccessible strong-field, highly relativistic regime. While the LIGO detections are so far consistent with the predictions of General Relativity, future gravitational-wave observations will allow us to explore this regime to unprecedented accuracy. One of the generic predictions of theories of gravity that extend General Relativity is the violation of the strong equivalence principle, i.e. strongly gravitating bodies such as neutron stars and black holes follow trajectories that depend on their nature and composition. This has deep consequences for gravitational-wave emission, which takes place with additional degrees of freedom besides the tensor polarizations of General Relativity. I will briefly review the formalism needed to describe these extra emission channels, and show that binary black-hole observations probe a set of gravitational theories that are largely disjoint from those that are testable with binary pulsars or neutron stars.
We investigate the correspondence between generally covariant higher derivative scalar-tensor theory and spatially covariant gravity theory. The building blocks are the scalar field and spacetime curvature tensor together with their generally covariant derivatives for the former, and the spatially covariant geometric quantities together with their spatially covariant derivatives for the later. In the case of a single scalar degree of freedom, they are transformed to each other by gauge fixing and recovering procedures, of which we give the explicit expressions. We make a systematic classification of all the scalar monomials in the spatially covariant gravity according to the total number of derivatives up to $d=4$, and their correspondence to the scalar-tensor monomials. We discusse the possibility of using spatially covariant monomials to generate ghostfree higher derivative scalar-tensor theories. We also derive the covariant 3+1 decomposition without fixing any specific coordinate, which will be useful when performing a covariant Hamiltonian analysis.
We present spontaneous scalarization of charged black holes (BHs) which is induced by the coupling of the scalar field to the electromagnetic field strength and the double-dual Riemann tensor $L^{mu ualphabeta}F_{mu u}F_{alphabeta}$ in a scalar-vector-tensor theory. In our model, the scalarization can be realized under the curved background with a non-trivial electromagnetic field, such as Reissner-Nordstr$ddot{rm o}$m Black Holes (RN BHs). Firstly, we investigate the stability of the constant scalar field around RN BHs in the model, and show that the scalar field can suffer a tachyonic instability. Secondly, the bound state solution of the test scalar field around a RN BH and its stability are discussed. Finally, we construct scalarized BH solutions, and investigate their stability.
Previously, the Einstein equation has been described as an equation of state, general relativity as the equilibrium state of gravity, and $f({cal R})$ gravity as a non-equilibrium one. We apply Eckarts first order thermodynamics to the effective dissipative fluid describing scalar-tensor gravity. Surprisingly, we obtain simple expressions for the effective heat flux, temperature of gravity, shear and bulk viscosity, and entropy density, plus a generalized Fourier law in a consistent Eckart thermodynamical picture. Well-defined notions of temperature and approach to equilibrium, missing in the current thermodynamics of spacetime scenarios, naturally emerge.