Do you want to publish a course? Click here

Riemann Tensor and Gauss-Bonnet density in Metric-Affine Cosmology

112   0   0.0 ( 0 )
 Added by Damianos Iosifidis
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analytically derive the covariant form of the Riemann (curvature) tensor for homogeneous Metric-Affine Cosmologies. That is, we present, in a Cosmological setting, the most general covariant form of the full Riemann tensor including also its non-Riemannian pieces which are associated to spacetime torsion and non-metricity. Having done so we also compute a list of the curvature tensor by-products such as Ricci tensor, homothetic curvature, Ricci scalar, Einstein tensor etc. Finally we derive the generalized Metric-Affine version of the usual Gauss-Bonnet density in this background and demonstrate how under certain circumstances the latter represents a total derivative term.



rate research

Read More

We study non-trivial (i.e. non-Levi-Civita) connections in metric-affine Lovelock theories. First we study the projective invariance of general Lovelock actions and show that all connections constructed by acting with a projective transformation of the Levi-Civita connection are allowed solutions, albeit physically equivalent to Levi-Civita. We then show that the (non-integrable) Weyl connection is also a solution for the specific case of the four-dimensional metric-affine Gauss-Bonnet action, for arbritrary vector fields. The existence of this solution is related to a two-vector family of transformations, that leaves the Gauss-Bonnet action invariant when acting on metric-compatible connections. We argue that this solution is physically inequivalent to the Levi-Civita connection, giving thus a counterexample to the statement that the metric and the Palatini formalisms are equivalent for Lovelock gravities. We discuss the mathematical structure of the set of solutions within the space of connections.
In this article, we study a type of one-field approach for open inflationary universe scenario in the context of braneworld models with a Gauss-Bonnet correction term. For a one-bubble universe model, we determine and characterize the existence of the Coleman-De Lucia instanton together with the period of inflation after tunneling has occurred. Our results are compared those analogous obtained when the usual Einstein Theory of Gravitation is used.
We construct boson stars in (4+1)-dimensional Gauss-Bonnet gravity. We study the properties of the solutions in dependence on the coupling constants and investigate these in detail. While the thick wall limit is independent of the value of the Gauss-Bonnet coupling, we find that the spiraling behaviour characteristic for boson stars in standard Einstein gravity disappears for large enough values of the Gauss-Bonnet coupling. Our results show that in this case the scalar field can not have arbitrarily high values at the center of the boson star and that it is hence impossible to reach the thin wall limit. Moreover, for large enough Gauss-Bonnet coupling we find a unique relation between the mass and the radius (qualitatively similar to those of neutron stars) which is not present in the Einstein gravity limit.
91 - Damianos Iosifidis 2019
This Thesis is devoted to the study of Metric-Affine Theories of Gravity and Applications to Cosmology. The thesis is organized as follows. In the first Chapter we define the various geometrical quantities that characterize a non-Riemannian geometry. In the second Chapter we explore the MAG model building. In Chapter 3 we use a well known procedure to excite torsional degrees of freedom by coupling surface terms to scalars. Then, in Chapter 4 which seems to be the most important Chapter of the thesis, at least with regards to its use in applications, we present a step by step way to solve for the affine connection in non-Riemannian geometries, for the first time in the literature. A peculiar f(R) case is studied in Chapter 5. This is the conformally (as well as projective invariant) invariant theory f(R)=a R^{2} which contains an undetermined scalar degree of freedom. We then turn our attention to Cosmology with torsion and non-metricity (Chapter 6). In Chapter 7, we formulate the necessary setup for the $1+3$ splitting of the generalized spacetime. Having clarified the subtle points (that generally stem from non-metricity) in the aforementioned formulation we carefully derive the generalized Raychaudhuri equation in the presence of both torsion and non-metricity (along with curvature). This, as it stands, is the most general form of the Raychaudhuri equation that exists in the literature. We close this Thesis by considering three possible scale transformations that one can consider in Metric-Affine Geometry.
We investigate Euclidean wormholes in Gauss-Bonnet-dilaton gravity to explain the creation of the universe from nothing. We considered two types of dilaton couplings (i.e., the string-inspired model and the Gaussian model) and we obtained qualitatively similar results. There can exist Euclidean wormholes that explain the possible origin of our universe, where the dilaton field is located over the barrier of dilaton potential. This solution can exist even if dilaton potential does not satisfy slow-roll conditions. In addition, the probability is higher than that of the Hawking-Moss instanton with the same final condition. Therefore, Euclidean wormholes in Gauss-Bonnet-dilaton gravity are a possible and probable scenario, which explains the origin of our universe.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا