Do you want to publish a course? Click here

Identifying Driver Interactions via Conditional Behavior Prediction

90   0   0.0 ( 0 )
 Added by Ekaterina Tolstaya
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Interactive driving scenarios, such as lane changes, merges and unprotected turns, are some of the most challenging situations for autonomous driving. Planning in interactive scenarios requires accurately modeling the reactions of other agents to different future actions of the ego agent. We develop end-to-end models for conditional behavior prediction (CBP) that take as an input a query future trajectory for an ego-agent, and predict distributions over future trajectories for other agents conditioned on the query. Leveraging such a model, we develop a general-purpose agent interactivity score derived from probabilistic first principles. The interactivity score allows us to find interesting interactive scenarios for training and evaluating behavior prediction models. We further demonstrate that the proposed score is effective for agent prioritization under computational budget constraints.



rate research

Read More

For safe navigation around pedestrians, automated vehicles (AVs) need to plan their motion by accurately predicting pedestrians trajectories over long time horizons. Current approaches to AV motion planning around crosswalks predict only for short time horizons (1-2 s) and are based on data from pedestrian interactions with human-driven vehicles (HDVs). In this paper, we develop a hybrid systems model that uses pedestrians gap acceptance behavior and constant velocity dynamics for long-term pedestrian trajectory prediction when interacting with AVs. Results demonstrate the applicability of the model for long-term (> 5 s) pedestrian trajectory prediction at crosswalks. Further we compared measures of pedestrian crossing behaviors in the immersive virtual environment (when interacting with AVs) to that in the real world (results of published studies of pedestrians interacting with HDVs), and found similarities between the two. These similarities demonstrate the applicability of the hybrid model of AV interactions developed from an immersive virtual environment (IVE) for real-world scenarios for both AVs and HDVs.
Studies have shown that autonomous vehicles (AVs) behave conservatively in a traffic environment composed of human drivers and do not adapt to local conditions and socio-cultural norms. It is known that socially aware AVs can be designed if there exist a mechanism to understand the behaviors of human drivers. We present a notion of Machine Theory of Mind (M-ToM) to infer the behaviors of human drivers by observing the trajectory of their vehicles. Our M-ToM approach, called StylePredict, is based on trajectory analysis of vehicles, which has been investigated in robotics and computer vision. StylePredict mimics human ToM to infer driver behaviors, or styles, using a computational mapping between the extracted trajectory of a vehicle in traffic and the driver behaviors using graph-theoretic techniques, including spectral analysis and centrality functions. We use StylePredict to analyze driver behavior in different cultures in the USA, China, India, and Singapore, based on traffic density, heterogeneity, and conformity to traffic rules and observe an inverse correlation between longitudinal (overspeeding) and lateral (overtaking, lane-changes) driving styles.
169 - Zheng Wang , Muhua Guan , Jin Lan 2020
Lane change is a very demanding driving task and number of traffic accidents are induced by mistaken maneuvers. An automated lane change system has the potential to reduce driver workload and to improve driving safety. One challenge is how to improve driver acceptance on the automated system. From the viewpoint of human factors, an automated system with different styles would improve user acceptance as the drivers can adapt the style to different driving situations. This paper proposes a method to design different lane change styles in automated driving by analysis and modeling of truck driver behavior. A truck driving simulator experiment with 12 participants was conducted to identify the driver model parameters and three lane change styles were classified as the aggressive, medium, and conservative ones. The proposed automated lane change system was evaluated by another truck driving simulator experiment with the same 12 participants. Moreover, the effect of different driving styles on driver experience and acceptance was evaluated. The evaluation results demonstrate that the different lane change styles could be distinguished by the drivers; meanwhile, the three styles were overall evaluated as acceptable on safety issues and reliable by the human drivers. This study provides insight into designing the automated driving system with different driving styles and the findings can be applied to commercial automated trucks.
55 - Zirui Li , Chao Lu , Cheng Gong 2020
The urban intersection is a typically dynamic and complex scenario for intelligent vehicles, which exists a variety of driving behaviors and traffic participants. Accurately modelling the driver behavior at the intersection is essential for intelligent transportation systems (ITS). Previous researches mainly focus on using attention mechanism to model the degree of correlation. In this research, a canonical correlation analysis (CCA)-based framework is proposed. The value of canonical correlation is used for feature selection. Gaussian mixture model and Gaussian process regression are applied for driver behavior modelling. Two experiments using simulated and naturalistic driving data are designed for verification. Experimental results are consistent with the drivers judgment. Comparative studies show that the proposed framework can obtain a better performance.
We focus on safe ego-navigation in dense simulated traffic environments populated by road agents with varying driver behavior. Navigation in such environments is challenging due to unpredictability in agents actions caused by their heterogeneous behaviors. To overcome these challenges, we propose a new simulation technique which consists of enriching existing traffic simulators with behavior-rich trajectories corresponding to varying levels of aggressiveness. We generate these trajectories with the help of a driver behavior modeling algorithm. We then use the enriched simulator to train a deep reinforcement learning (DRL) policy for behavior-guided action prediction and local navigation in dense traffic. The policy implicitly models the interactions between traffic agents and computes safe trajectories for the ego-vehicle accounting for aggressive driver maneuvers such as overtaking, over-speeding, weaving, and sudden lane changes. Our enhanced behavior-rich simulator can be used for generating datasets that consist of trajectories corresponding to diverse driver behaviors and traffic densities, and our behavior-based navigation scheme reduces collisions by $7.13 - 8.40$%, handling scenarios with $8times$ higher traffic density compared to prior DRL-based approaches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا