No Arabic abstract
For safe navigation around pedestrians, automated vehicles (AVs) need to plan their motion by accurately predicting pedestrians trajectories over long time horizons. Current approaches to AV motion planning around crosswalks predict only for short time horizons (1-2 s) and are based on data from pedestrian interactions with human-driven vehicles (HDVs). In this paper, we develop a hybrid systems model that uses pedestrians gap acceptance behavior and constant velocity dynamics for long-term pedestrian trajectory prediction when interacting with AVs. Results demonstrate the applicability of the model for long-term (> 5 s) pedestrian trajectory prediction at crosswalks. Further we compared measures of pedestrian crossing behaviors in the immersive virtual environment (when interacting with AVs) to that in the real world (results of published studies of pedestrians interacting with HDVs), and found similarities between the two. These similarities demonstrate the applicability of the hybrid model of AV interactions developed from an immersive virtual environment (IVE) for real-world scenarios for both AVs and HDVs.
For automated vehicles (AVs) to reliably navigate through crosswalks, they need to understand pedestrians crossing behaviors. Simple and reliable pedestrian behavior models aid in real-time AV control by allowing the AVs to predict future pedestrian behaviors. In this paper, we present a Behavior aware Model Predictive Controller (B-MPC) for AVs that incorporates long-term predictions of pedestrian crossing behavior using a previously developed pedestrian crossing model. The model incorporates pedestrians gap acceptance behavior and utilizes minimal pedestrian information, namely their position and speed, to predict pedestrians crossing behaviors. The BMPC controller is validated through simulations and compared to a rule-based controller. By incorporating predictions of pedestrian behavior, the B-MPC controller is able to efficiently plan for longer horizons and handle a wider range of pedestrian interaction scenarios than the rule-based controller. Results demonstrate the applicability of the controller for safe and efficient navigation at crossing scenarios.
As autonomous systems begin to operate amongst humans, methods for safe interaction must be investigated. We consider an example of a small autonomous vehicle in a pedestrian zone that must safely maneuver around people in a free-form fashion. We investigate two key questions: How can we effectively integrate pedestrian intent estimation into our autonomous stack. Can we develop an online monitoring framework to give formal guarantees on the safety of such human-robot interactions. We present a pedestrian intent estimation framework that can accurately predict future pedestrian trajectories given multiple possible goal locations. We integrate this into a reachability-based online monitoring scheme that formally assesses the safety of these interactions with nearly real-time performance (approximately 0.3 seconds). These techniques are integrated on a test vehicle with a complete in-house autonomous stack, demonstrating effective and safe interaction in real-world experiments.
Pedestrians and vehicles often share the road in complex inner city traffic. This leads to interactions between the vehicle and pedestrians, with each affecting the others motion. In order to create robust methods to reason about pedestrian behavior and to design interfaces of communication between self-driving cars and pedestrians we need to better understand such interactions. In this paper, we present a data-driven approach to implicitly model pedestrians interactions with vehicles, to better predict pedestrian behavior. We propose a LSTM model that takes as input the past trajectories of the pedestrian and ego-vehicle, and pedestrian head orientation, and predicts the future positions of the pedestrian. Our experiments based on a real-world, inner city dataset captured with vehicle mounted cameras, show that the usage of such cues improve pedestrian prediction when compared to a baseline that purely uses the past trajectory of the pedestrian.
Security operation centers (SOCs) typically use a variety of tools to collect large volumes of host logs for detection and forensic of intrusions. Our experience, supported by recent user studies on SOC operators, indicates that operators spend ample time (e.g., hundreds of man-hours) on investigations into logs seeking adversarial actions. Similarly, reconfiguration of tools to adapt detectors for future similar attacks is commonplace upon gaining novel insights (e.g., through internal investigation or shared indicators). This paper presents an automated malware pattern-extraction and early detection tool, testing three machine learning approaches: TF-IDF (term frequency-inverse document frequency), Fishers LDA (linear discriminant analysis) and ET (extra trees/extremely randomized trees) that can (1) analyze freshly discovered malware samples in sandboxes and generate dynamic analysis reports (host logs); (2) automatically extract the sequence of events induced by malware given a large volume of ambient (un-attacked) host logs, and the relatively few logs from hosts that are infected with potentially polymorphic malware; (3) rank the most discriminating features (unique patterns) of malware and from the learned behavior detect malicious activity; and (4) allows operators to visualize the discriminating features and their correlations to facilitate malware forensic efforts. To validate the accuracy and efficiency of our tool, we design three experiments and test seven ransomware attacks (i.e., WannaCry, DBGer, Cerber, Defray, GandCrab, Locky, and nRansom). The experimental results show that TF-IDF is the best of the three methods to identify discriminating features, and ET is the most time-efficient and robust approach.
Interactive driving scenarios, such as lane changes, merges and unprotected turns, are some of the most challenging situations for autonomous driving. Planning in interactive scenarios requires accurately modeling the reactions of other agents to different future actions of the ego agent. We develop end-to-end models for conditional behavior prediction (CBP) that take as an input a query future trajectory for an ego-agent, and predict distributions over future trajectories for other agents conditioned on the query. Leveraging such a model, we develop a general-purpose agent interactivity score derived from probabilistic first principles. The interactivity score allows us to find interesting interactive scenarios for training and evaluating behavior prediction models. We further demonstrate that the proposed score is effective for agent prioritization under computational budget constraints.