Do you want to publish a course? Click here

Deep Learning based Efficient Symbol-Level Precoding Design for MU-MISO Systems

143   0   0.0 ( 0 )
 Added by Zhu Bo
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The recently emerged symbol-level precoding (SLP) technique has been regarded as a promising solution in multi-user wireless communication systems, since it can convert harmful multi-user interference (MUI) into beneficial signals for enhancing system performance. However, the tremendous computational complexity of conventional symbol-level precoding designs severely hinders the practical implementations. In order to tackle this difficulty, we propose a novel deep learning (DL) based approach to efficiently design the symbol-level precoders. Particularly, in this correspondence, we consider a multi-user multi-input single-output (MU-MISO) downlink system. An efficient precoding neural network (EPNN) is introduced to optimize the symbol-level precoders for maximizing the minimum quality-of-service (QoS) of all users under the power constraint. Simulation results demonstrate that the proposed EPNN based SLP design can dramatically reduce the computing time at the price of slight performance loss compared with the conventional convex optimization based SLP design.



rate research

Read More

In this paper, we address the symbol level precoding (SLP) design problem under max-min SINR criterion in the downlink of multiuser multiple-input single-output (MISO) channels. First, we show that the distance preserving constructive interference regions (DPCIR) are always polyhedral angles (shifted pointed cones) for any given constellation point with unbounded decision region. Then we prove that any signal in a given unbounded DPCIR has a norm larger than the norm of the corresponding vertex if and only if the convex hull of the constellation contains the origin. Using these properties, we show that the power of the noiseless received signal lying on an unbounded DPCIR is an strictly increasing function of two parameters. This allows us to reformulate the originally non-convex SLP max-min SINR as a convex optimization problem. We discuss the loss due to our proposed convex reformulation and provide some simulation results.
This paper investigates a joint beamforming design in a multiuser multiple-input single-output (MISO) communication network aided with an intelligent reflecting surface (IRS) panel. The symbol-level precoding (SLP) is adopted to enhance the system performance by exploiting the multiuser interference (MUI) with consideration of bounded channel uncertainty. The joint beamforming design is formulated into a nonconvex worst-case robust programming to minimize the transmit power subject to single-to-noise ratio (SNR) requirements. To address the challenges due to the constant modulus and the coupling of the beamformers, we first study the single-user case. Specifically, we propose and compare two algorithms based on the semidefinite relaxation (SDR) and alternating optimization (AO) methods, respectively. It turns out that the AO-based algorithm has much lower computational complexity but with almost the same power to the SDR-based algorithm. Then, we apply the AO technique to the multiuser case and thereby develop an algorithm based on the proximal gradient descent (PGD) method. The algorithm can be generalized to the case of finite-resolution IRS and the scenario with direct links from the transmitter to the users. Numerical results show that the SLP can significantly improve the system performance. Meanwhile, 3-bit phase shifters can achieve near-optimal power performance.
83 - R. Liu , M. Li , Q. Liu 2019
Intelligent reflecting surfaces (IRSs) have emerged as a revolutionary solution to enhance wireless communications by changing propagation environment in a cost-effective and hardware-efficient fashion. In addition, symbol-level precoding (SLP) has attracted considerable attention recently due to its advantages in converting multiuser interference (MUI) into useful signal energy. Therefore, it is of interest to investigate the employment of IRS in symbol-level precoding systems to exploit MUI in a more effective way by manipulating the multiuser channels. In this paper, we focus on joint symbol-level precoding and reflecting designs in IRS-enhanced multiuser multiple-input single-output (MU-MISO) systems. Both power minimization and quality-of-service (QoS) balancing problems are considered. In order to solve the joint optimization problems, we develop an efficient iterative algorithm to decompose them into separate symbol-level precoding and block-level reflecting design problems. An efficient gradient-projection-based algorithm is utilized to design the symbol-level precoding and a Riemannian conjugate gradient (RCG)-based algorithm is employed to solve the reflecting design problem. Simulation results demonstrate the significant performance improvement introduced by the IRS and illustrate the effectiveness of our proposed algorithms.
Massive multiuser multiple-input multiple-output (MU-MIMO) has been the mainstream technology in fifth-generation wireless systems. To reduce high hardware costs and power consumption in massive MU-MIMO, low-resolution digital-to-analog converters (DAC) for each antenna and radio frequency (RF) chain in downlink transmission is used, which brings challenges for precoding design. To circumvent these obstacles, we develop a model-driven deep learning (DL) network for massive MU-MIMO with finite-alphabet precoding in this article. The architecture of the network is specially designed by unfolding an iterative algorithm. Compared with the traditional state-of-the-art techniques, the proposed DL-based precoder shows significant advantages in performance, complexity, and robustness to channel estimation error under Rayleigh fading channel.
In this paper, we investigate the symbol-level precoding (SLP) design problem in the downlink of a multiuser multiple-input single-output (MISO) channel. We consider generic constellations with any arbitrary shape and size, and confine ourselves to one of the main categories of constructive interference regions (CIR), namely, distance preserving CIR (DPCIR). We provide a comprehensive study of DPCIRs and derive some properties for these regions. Using these properties, we first show that any signal in a given DPCIR has a norm greater than or equal to the norm of the corresponding constellation point if and only if the convex hull of the constellation contains the origin. It is followed by proving that the power of the noiseless received signal lying on a DPCIR is a monotonic strictly increasing function of two parameters relating to the infinite Voronoi edges. Using the convex description of DPCIRs and their properties, we formulate two design problems, namely, the SLP power minimization with signal-to-interference-plus-noise ratio (SINR) constraints, and the SLP SINR balancing problem under max-min fairness criterion. The SLP power minimization based on DPCIRs can straightforwardly be written as a quadratic program (QP). We provide a simplified reformulation of this problem which is less computationally complex. The SLP max-min SINR, however, is non-convex in its original form, and hence difficult to tackle. We propose several alternative optimization approaches, including semidefinite program (SDP) formulation and block coordinate descent (BCD) optimization. We discuss and evaluate the loss due to the proposed alternative methods through extensive simulation results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا