Do you want to publish a course? Click here

Infrared phonon spectroscopy on the Cairo pentagonal antiferromagnet Bi2Fe4O9: a study through the pressure induced structural transition

201   0   0.0 ( 0 )
 Added by Marine Verseils
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic and crystallographic transitions in the Cairo pentagonal magnet Bi2Fe4O9 are investigated by means of infrared synchrotron-based spectroscopy as a function of temperature (20 - 300 K) and pressure (0 - 15.5 GPa). One of the phonon modes is shown to exhibit an anomalous softening as a function of temperature in the antiferromagnetic phase below 240 K, highlighting spin-lattice coupling. Moreover, under applied pressure at 40 K, an even larger softening is observed through the pressure induced structural transition. Lattice dynamical calculations reveal that this mode is indeed very peculiar as it involves a minimal bending of the strongest superexchange path in the pentagonal planes, as well as a decrease of the distances between second neighbor irons. The latter confirms the hypothesis made by Friedrich et al.,1 about an increase in the oxygen coordination of irons being at the origin of the pressure-induced structural transition. As a consequence, one expects a new magnetic superexchange path that may alter the magnetic structure under pressure.



rate research

Read More

The research field of magnetic frustration is dominated by triangle-based lattices but exotic phenomena can also be observed in pentagonal networks. A peculiar noncollinear magnetic order is indeed known to be stabilized in Bi2Fe4O9 materializing a Cairo pentagonal lattice. We present the spin wave excitations in the magnetically ordered state, obtained by inelastic neutron scattering. They reveal an unconventional excited state related to local precession of pairs of spins. The magnetic excitations are then modeled to determine the superexchange interactions for which the frustration is indeed at the origin of the spin arrangement. This analysis unveils a hierarchy in the interactions, leading to a paramagnetic state (close to the Neel temperature) constituted of strongly coupled dimers separated by much less correlated spins. This produces two types of response to an applied magnetic field associated with the two nonequivalent Fe sites, as observed in the magnetization distributions obtained using polarized neutrons.
Multiferroic bismuth ferrite Bi_2Fe_4O_9 (BFO) ceramic was synthesized by conventional solid state reaction route. X-ray diffraction and Rietveld refinement show formation of single phase ceramic with orthorhombic crystal structure (space group Pbam). The morphological study depicted a well-defined grain of size $simeq$2{mu}m. The optical studies were carried out by using UV-Vis spectrophotometer which shows a band gap of 1.53 eV and a green emission spectrum at 537 is observed in the Photoluminescence study. The frequency dependent dielectric study at various temperature revealed that the dielectric constant decreases with increase in frequency. A noticeable peak shift towards higher frequency with increasing temperature is observed in the frequency dependent dielectric loss plot. The impedance spectroscopy shows a substantial shift in imaginary impedance (Z) peaks toward the high frequency side described that the conduction in material favoring the long range motion of mobile charge carriers. The presence of non-Debye type multiple relaxations has been confirmed by complex modulus analysis. The frequency dependent ac conductivity at different temperatures indicates that the conduction process is thermally activated. The variation of dc conductivity exhibited a negative temperature coefficient of resistance behavior. The activation energy calculated from impedance, modulus and conductivity data confirmed that the oxygen vacancies play a vital role in the conduction mechanism.
240 - A. Pashkin , K. Rabia , S. Frank 2007
We present the results of pressure-dependent far-infrared reflectivity measurements on the multiferroic perovskite BiFeO3 at room temperature. The observed behavior of the infrared-active phonon modes as a funtion of pressure clearly reveals two structural phase transitions around 3.0 and 7.5 GPa, supporting the results of recent Raman and x-ray diffraction studies under pressure. Based on the pressure-dependent frequency shifts of the infrared-active phonon modes we discuss the possible character of the phase transitions.
The crystal structures of the quasi-one-dimensional organic salts (TMTTF)$_2$PF$_6$ and (TMTSF)$_2$PF$_6$ were studied by pressure-dependent x-ray diffraction up to 10 GPa at room temperature. The unit-cell parameters exhibit a clear anomaly due to a structural phase transition at 8.5 and 5.5 GPa for (TMTTF)$_2$PF$_6$ and (TMTSF)$_2$PF$_6$, respectively.
We investigate the crystal structure and lattice vibrations of Sr$_2$IrO$_4$ by a combined phonon Raman scattering and x-ray powder diffraction experiment under pressures up to $66$ GPa and room temperature. Density functional theory (DFT) and $ab$-initio lattice dynamics calculations were also carried out. A first-order structural phase transition associated with an $8$ % collapse of the $c$-axis is observed at high pressures, with phase coexistence being observed between $sim 40$ and $55$ GPa. At lower pressures, lattice and phonon anomalies were observed, reflecting crossovers between isostructural competing states. A critical pressure of $P_1=17$ GPa is associated with: (i) a reduction of lattice volume compressibility and a change of behavior of the tetragonal $c/a$ ratio take place above $P_1$; (ii) a four-fold symmetry-breaking lattice strain associated with lattice disorder; (iii) disappearance of two Raman active modes (at $sim 180$ and $sim 260$ cm$^{-1}$); and (iv) development of an asymmetric Fano lineshape for the $sim 390$ cm$^{-1}$ mode. DFT indicates that the phase above $P_1$ is most likely non-magnetic. Exploring the similarities between iridate and cuprate physics, we argue that these observations are consistent with the emergence of a rotational symmetry-breaking electronic instability at $P_1$, providing hints for the avoided metallization under pressure and supporting the hypothesis of possible competing orders that are detrimental to superconductivity in this family. Alternative scenarios for the transition at $P_1$ are also suggested and critically discussed. Additional phonon and lattice anomalies in the tetragonal phase are observed at $P_2=30$ and $P_3=40$ GPa, indicating further competing phases that are stabilized at high pressures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا