No Arabic abstract
In recent years, there has been a significant progress in the development of digital quantum processors. The state-of-the-art quantum devices are imperfect, and fully-algorithmic fault-tolerant quantum computing is a matter of future. Until technology develops to the state with practical error correction, computational approaches other than the standard digital one can be used to avoid execution of the most noisy quantum operations. We demonstrate how a hybrid digital-analog approach allows simulating dynamics of a transverse-field Ising model without standard two-qubit gates, which are currently one of the most problematic building blocks of quantum circuits. We use qubit-qubit crosstalks (couplings) of IBM superconducting quantum processors to simulate Trotterized dynamics of spin clusters and then we compare the obtained results with the results of conventional digital computation based on two-qubit gates from the universal set. The comparison shows that digital-analog approach significantly outperforms standard digital approach for this simulation problem, despite of the fact that crosstalks in IBM quantum processors are small. We argue that the efficiency of digital-analog quantum computing can be improved with the help of more specialized processors, so that they can be used to efficiently implement other quantum algorithms. This indicates the prospect of a digital-to-analog strategy for near-term noisy intermediate-scale quantum computers.
Simulating quantum physics with a device which itself is quantum mechanical, a notion Richard Feynman originated, would be an unparallelled computational resource. However, the universal quantum simulation of fermionic systems is daunting due to their particle statistics, and Feynman left as an open question whether it could be done, because of the need for non-local control. Here, we implement fermionic interactions with digital techniques in a superconducting circuit. Focusing on the Hubbard model, we perform time evolution with constant interactions as well as a dynamic phase transition with up to four fermionic modes encoded in four qubits. The implemented digital approach is universal and allows for the efficient simulation of fermions in arbitrary spatial dimensions. We use in excess of 300 single-qubit and two-qubit gates, and reach global fidelities which are limited by gate errors. This demonstration highlights the feasibility of the digital approach and opens a viable route towards analog-digital quantum simulation of interacting fermions and bosons in large-scale solid state systems.
We show how the dynamical modulation of the qubit-field coupling strength in a circuit quantum electrodynamics architecture mimics the motion of the qubit at relativistic speeds. This allows us to propose a realistic experiment to detect microwave photons coming from simulated acceleration radiation. Moreover, by combining this technique with the dynamical Casimir physics, we enhance the toolbox for studying relativistic phenomena in quantum field theory with superconducting circuits.
A quantum computer will use the properties of quantum physics to solve certain computational problems much faster than otherwise possible. One promising potential implementation is to use superconducting quantum bits in the circuit quantum electrodynamics (cQED) architecture. There, the low energy states of a nonlinear electronic oscillator are isolated and addressed as a qubit. These qubits are capacitively coupled to the modes of a microwave-frequency transmission line resonator which serves as a quantum communication bus. Microwave electrical pulses are applied to the resonator to manipulate or measure the qubit state. State control is calibrated using diagnostic sequences that expose systematic errors. Hybridization of the resonator with the qubit gives it a nonlinear response when driven strongly, useful for amplifying the measurement signal to enhance accuracy. Qubits coupled to the same bus may coherently interact with one another via the exchange of virtual photons. A two-qubit conditional phase gate mediated by this interaction can deterministically entangle its targets, and is used to generate two-qubit Bell states and three-qubit GHZ states. These three-qubit states are of particular interest because they redundantly encode quantum information. They are the basis of the quantum repetition code prototypical of more sophisticated schemes required for quantum computation. Using a three-qubit Toffoli gate, this code is demonstrated to autonomously correct either bit- or phase-flip errors. Despite observing the expected behavior, the overall fidelity is low because of decoherence. A superior implementation of cQED replaces the transmission-line resonator with a three-dimensional box mode, increasing lifetimes by an order of magnitude. In-situ qubit frequency control is enabled with control lines, which are used to fully characterize and control the system Hamiltonian.
Quantum simulators are attractive as a means to study many-body quantum systems that are not amenable to classical numerical treatment. A versatile framework for quantum simulation is offered by superconducting circuits. In this perspective, we discuss how superconducting circuits allow the engineering of a wide variety of interactions, which in turn allows the simulation of a wide variety of model Hamiltonians. In particular we focus on strong photon-photon interactions mediated by nonlinear elements. This includes on-site, nearest-neighbour and four-body interactions in lattice models, allowing the implementation of extended Bose-Hubbard models and the toric code. We discuss not only the present state in analogue quantum simulation, but also future perspectives of superconducting quantum simulation that open up when concatenating quantum gates in emerging quantum computing platforms.
Quantum annealing (QA) is a heuristic algorithm for finding low-energy configurations of a system, with applications in optimization, machine learning, and quantum simulation. Up to now, all implementations of QA have been limited to qubits coupled via a single degree of freedom. This gives rise to a stoquastic Hamiltonian that has no sign problem in quantum Monte Carlo (QMC) simulations. In this paper, we report implementation and measurements of two superconducting flux qubits coupled via two canonically conjugate degrees of freedom (charge and flux) to achieve a nonstoquastic Hamiltonian. Such coupling can enhance performance of QA processors, extend the range of quantum simulations. We perform microwave spectroscopy to extract circuit parameters and show that the charge coupling manifests itself as a YY interaction in the computational basis. We observe destructive interference in quantum coherent oscillations between the computational basis states of the two-qubit system. Finally, we show that the extracted Hamiltonian is nonstoquastic over a wide range of parameters.