Do you want to publish a course? Click here

Unsupervised Shape Completion via Deep Prior in the Neural Tangent Kernel Perspective

61   0   0.0 ( 0 )
 Added by Hao Pan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present a novel approach for completing and reconstructing 3D shapes from incomplete scanned data by using deep neural networks. Rather than being trained on supervised completion tasks and applied on a testing shape, the network is optimized from scratch on the single testing shape, to fully adapt to the shape and complete the missing data using contextual guidance from the known regions. The ability to complete missing data by an untrained neural network is usually referred to as the deep prior. In this paper, we interpret the deep prior from a neural tangent kernel (NTK) perspective and show that the completed shape patches by the trained CNN are naturally similar to existing patches, as they are proximate in the kernel feature space induced by NTK. The interpretation allows us to design more efficient network structures and learning mechanisms for the shape completion and reconstruction task. Being more aware of structural regularities than both traditional and other unsupervised learning-based reconstruction methods, our approach completes large missing regions with plausible shapes and complements supervised learning-based methods that use database priors by requiring no extra training data set and showing flexible adaptation to a particular shape instance.



rate research

Read More

294 - Xiang Li , Lingjing Wang , Yi Fang 2020
We propose a self-supervised method for partial point set registration. While recent proposed learning-based methods have achieved impressive registration performance on the full shape observations, these methods mostly suffer from performance degradation when dealing with partial shapes. To bridge the performance gaps between partial point set registration with full point set registration, we proposed to incorporate a shape completion network to benefit the registration process. To achieve this, we design a latent code for each pair of shapes, which can be regarded as a geometric encoding of the target shape. By doing so, our model does need an explicit feature embedding network to learn the feature encodings. More importantly, both our shape completion network and the point set registration network take the shared latent codes as input, which are optimized along with the parameters of two decoder networks in the training process. Therefore, the point set registration process can thus benefit from the joint optimization process of latent codes, which are enforced to represent the information of full shape instead of partial ones. In the inference stage, we fix the network parameter and optimize the latent codes to get the optimal shape completion and registration results. Our proposed method is pure unsupervised and does not need any ground truth supervision. Experiments on the ModelNet40 dataset demonstrate the effectiveness of our model for partial point set registration.
Most 3D shape completion approaches rely heavily on partial-complete shape pairs and learn in a fully supervised manner. Despite their impressive performances on in-domain data, when generalizing to partial shapes in other forms or real-world partial scans, they often obtain unsatisfactory results due to domain gaps. In contrast to previous fully supervised approaches, in this paper we present ShapeInversion, which introduces Generative Adversarial Network (GAN) inversion to shape completion for the first time. ShapeInversion uses a GAN pre-trained on complete shapes by searching for a latent code that gives a complete shape that best reconstructs the given partial input. In this way, ShapeInversion no longer needs paired training data, and is capable of incorporating the rich prior captured in a well-trained generative model. On the ShapeNet benchmark, the proposed ShapeInversion outperforms the SOTA unsupervised method, and is comparable with supervised methods that are learned using paired data. It also demonstrates remarkable generalization ability, giving robust results for real-world scans and partial inputs of various forms and incompleteness levels. Importantly, ShapeInversion naturally enables a series of additional abilities thanks to the involvement of a pre-trained GAN, such as producing multiple valid complete shapes for an ambiguous partial input, as well as shape manipulation and interpolation.
The study of deep neural networks (DNNs) in the infinite-width limit, via the so-called neural tangent kernel (NTK) approach, has provided new insights into the dynamics of learning, generalization, and the impact of initialization. One key DNN architecture remains to be kernelized, namely, the recurrent neural network (RNN). In this paper we introduce and study the Recurrent Neural Tangent Kernel (RNTK), which provides new insights into the behavior of overparametrized RNNs. A key property of the RNTK should greatly benefit practitioners is its ability to compare inputs of different length. To this end, we characterize how the RNTK weights different time steps to form its output under different initialization parameters and nonlinearity choices. A synthetic and 56 real-world data experiments demonstrate that the RNTK offers significant performance gains over other kernels, including standard NTKs, across a wide array of data sets.
The prevailing thinking is that orthogonal weights are crucial to enforcing dynamical isometry and speeding up training. The increase in learning speed that results from orthogonal initialization in linear networks has been well-proven. However, while the same is believed to also hold for nonlinear networks when the dynamical isometry condition is satisfied, the training dynamics behind this contention have not been thoroughly explored. In this work, we study the dynamics of ultra-wide networks across a range of architectures, including Fully Connected Networks (FCNs) and Convolutional Neural Networks (CNNs) with orthogonal initialization via neural tangent kernel (NTK). Through a series of propositions and lemmas, we prove that two NTKs, one corresponding to Gaussian weights and one to orthogonal weights, are equal when the network width is infinite. Further, during training, the NTK of an orthogonally-initialized infinite-width network should theoretically remain constant. This suggests that the orthogonal initialization cannot speed up training in the NTK (lazy training) regime, contrary to the prevailing thoughts. In order to explore under what circumstances can orthogonality accelerate training, we conduct a thorough empirical investigation outside the NTK regime. We find that when the hyper-parameters are set to achieve a linear regime in nonlinear activation, orthogonal initialization can improve the learning speed with a large learning rate or large depth.
Deep residual network architectures have been shown to achieve superior accuracy over classical feed-forward networks, yet their success is still not fully understood. Focusing on massively over-parameterized, fully connected residual networks with ReLU activation through their respective neural tangent kernels (ResNTK), we provide here a spectral analysis of these kernels. Specifically, we show that, much like NTK for fully connected networks (FC-NTK), for input distributed uniformly on the hypersphere $mathbb{S}^{d-1}$, the eigenfunctions of ResNTK are the spherical harmonics and the eigenvalues decay polynomially with frequency $k$ as $k^{-d}$. These in turn imply that the set of functions in their Reproducing Kernel Hilbert Space are identical to those of FC-NTK, and consequently also to those of the Laplace kernel. We further show, by drawing on the analogy to the Laplace kernel, that depending on the choice of a hyper-parameter that balances between the skip and residual connections ResNTK can either become spiky with depth, as with FC-NTK, or maintain a stable shape.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا