Do you want to publish a course? Click here

Spectral Analysis of the Neural Tangent Kernel for Deep Residual Networks

155   0   0.0 ( 0 )
 Added by Yuval Belfer
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Deep residual network architectures have been shown to achieve superior accuracy over classical feed-forward networks, yet their success is still not fully understood. Focusing on massively over-parameterized, fully connected residual networks with ReLU activation through their respective neural tangent kernels (ResNTK), we provide here a spectral analysis of these kernels. Specifically, we show that, much like NTK for fully connected networks (FC-NTK), for input distributed uniformly on the hypersphere $mathbb{S}^{d-1}$, the eigenfunctions of ResNTK are the spherical harmonics and the eigenvalues decay polynomially with frequency $k$ as $k^{-d}$. These in turn imply that the set of functions in their Reproducing Kernel Hilbert Space are identical to those of FC-NTK, and consequently also to those of the Laplace kernel. We further show, by drawing on the analogy to the Laplace kernel, that depending on the choice of a hyper-parameter that balances between the skip and residual connections ResNTK can either become spiky with depth, as with FC-NTK, or maintain a stable shape.

rate research

Read More

The prevailing thinking is that orthogonal weights are crucial to enforcing dynamical isometry and speeding up training. The increase in learning speed that results from orthogonal initialization in linear networks has been well-proven. However, while the same is believed to also hold for nonlinear networks when the dynamical isometry condition is satisfied, the training dynamics behind this contention have not been thoroughly explored. In this work, we study the dynamics of ultra-wide networks across a range of architectures, including Fully Connected Networks (FCNs) and Convolutional Neural Networks (CNNs) with orthogonal initialization via neural tangent kernel (NTK). Through a series of propositions and lemmas, we prove that two NTKs, one corresponding to Gaussian weights and one to orthogonal weights, are equal when the network width is infinite. Further, during training, the NTK of an orthogonally-initialized infinite-width network should theoretically remain constant. This suggests that the orthogonal initialization cannot speed up training in the NTK (lazy training) regime, contrary to the prevailing thoughts. In order to explore under what circumstances can orthogonality accelerate training, we conduct a thorough empirical investigation outside the NTK regime. We find that when the hyper-parameters are set to achieve a linear regime in nonlinear activation, orthogonal initialization can improve the learning speed with a large learning rate or large depth.
The study of deep neural networks (DNNs) in the infinite-width limit, via the so-called neural tangent kernel (NTK) approach, has provided new insights into the dynamics of learning, generalization, and the impact of initialization. One key DNN architecture remains to be kernelized, namely, the recurrent neural network (RNN). In this paper we introduce and study the Recurrent Neural Tangent Kernel (RNTK), which provides new insights into the behavior of overparametrized RNNs. A key property of the RNTK should greatly benefit practitioners is its ability to compare inputs of different length. To this end, we characterize how the RNTK weights different time steps to form its output under different initialization parameters and nonlinearity choices. A synthetic and 56 real-world data experiments demonstrate that the RNTK offers significant performance gains over other kernels, including standard NTKs, across a wide array of data sets.
A major factor in the success of deep neural networks is the use of sophisticated architectures rather than the classical multilayer perceptron (MLP). Residual networks (ResNets) stand out among these powerful modern architectures. Previous works focused on the optimization advantages of deep ResNets over deep MLPs. In this paper, we show another distinction between the two models, namely, a tendency of ResNets to promote smoother interpolations than MLPs. We analyze this phenomenon via the neural tangent kernel (NTK) approach. First, we compute the NTK for a considered ResNet model and prove its stability during gradient descent training. Then, we show by various evaluation methodologies that for ReLU activations the NTK of ResNet, and its kernel regression results, are smoother than the ones of MLP. The better smoothness observed in our analysis may explain the better generalization ability of ResNets and the practice of moderately attenuating the residual blocks.
The Neural Tangent Kernel (NTK) has discovered connections between deep neural networks and kernel methods with insights of optimization and generalization. Motivated by this, recent works report that NTK can achieve better performances compared to training neural networks on small-scale datasets. However, results under large-scale settings are hardly studied due to the computational limitation of kernel methods. In this work, we propose an efficient feature map construction of the NTK of fully-connected ReLU network which enables us to apply it to large-scale datasets. We combine random features of the arc-cosine kernels with a sketching-based algorithm which can run in linear with respect to both the number of data points and input dimension. We show that dimension of the resulting features is much smaller than other baseline feature map constructions to achieve comparable error bounds both in theory and practice. We additionally utilize the leverage score based sampling for improved bounds of arc-cosine random features and prove a spectral approximation guarantee of the proposed feature map to the NTK matrix of two-layer neural network. We benchmark a variety of machine learning tasks to demonstrate the superiority of the proposed scheme. In particular, our algorithm can run tens of magnitude faster than the exact kernel methods for large-scale settings without performance loss.
The evolution of a deep neural network trained by the gradient descent can be described by its neural tangent kernel (NTK) as introduced in [20], where it was proven that in the infinite width limit the NTK converges to an explicit limiting kernel and it stays constant during training. The NTK was also implicit in some other recent papers [6,13,14]. In the overparametrization regime, a fully-trained deep neural network is indeed equivalent to the kernel regression predictor using the limiting NTK. And the gradient descent achieves zero training loss for a deep overparameterized neural network. However, it was observed in [5] that there is a performance gap between the kernel regression using the limiting NTK and the deep neural networks. This performance gap is likely to originate from the change of the NTK along training due to the finite width effect. The change of the NTK along the training is central to describe the generalization features of deep neural networks. In the current paper, we study the dynamic of the NTK for finite width deep fully-connected neural networks. We derive an infinite hierarchy of ordinary differential equations, the neural tangent hierarchy (NTH) which captures the gradient descent dynamic of the deep neural network. Moreover, under certain conditions on the neural network width and the data set dimension, we prove that the truncated hierarchy of NTH approximates the dynamic of the NTK up to arbitrary precision. This description makes it possible to directly study the change of the NTK for deep neural networks, and sheds light on the observation that deep neural networks outperform kernel regressions using the corresponding limiting NTK.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا