Do you want to publish a course? Click here

News Meets Microblog: Hashtag Annotation via Retriever-Generator

57   0   0.0 ( 0 )
 Added by Xiuwen Zheng
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Hashtag annotation for microblog posts has been recently formulated as a sequence generation problem to handle emerging hashtags that are unseen in the training set. The state-of-the-art method leverages conversations initiated by posts to enrich contextual information for the short posts. However, it is unrealistic to assume the existence of conversations before the hashtag annotation itself. Therefore, we propose to leverage news articles published before the microblog post to generate hashtags following a Retriever-Generator framework. Extensive experiments on English Twitter datasets demonstrate superior performance and significant advantages of leveraging news articles to generate hashtags.



rate research

Read More

100 - Qianren Mao , Xi Li , Hao Peng 2021
Automatic microblog hashtag generation can help us better and faster understand or process the critical content of microblog posts. Conventional sequence-to-sequence generation methods can produce phrase-level hashtags and have achieved remarkable performance on this task. However, they are incapable of filtering out secondary information and not good at capturing the discontinuous semantics among crucial tokens. A hashtag is formed by tokens or phrases that may originate from various fragmentary segments of the original text. In this work, we propose an end-to-end Transformer-based generation model which consists of three phases: encoding, segments-selection, and decoding. The model transforms discontinuous semantic segments from the source text into a sequence of hashtags. Specifically, we introduce a novel Segments Selection Mechanism (SSM) for Transformer to obtain segmental representations tailored to phrase-level hashtag generation. Besides, we introduce two large-scale hashtag generation datasets, which are newly collected from Chinese Weibo and English Twitter. Extensive evaluations on the two datasets reveal our approachs superiority with significant improvements to extraction and generation baselines. The code and datasets are available at url{https://github.com/OpenSUM/HashtagGen}.
In this paper, we study the identity of textual events from different documents. While the complex nature of event identity is previously studied (Hovy et al., 2013), the case of events across documents is unclear. Prior work on cross-document event coreference has two main drawbacks. First, they restrict the annotations to a limited set of event types. Second, they insufficiently tackle the concept of event identity. Such annotation setup reduces the pool of event mentions and prevents one from considering the possibility of quasi-identity relations. We propose a dense annotation approach for cross-document event coreference, comprising a rich source of event mentions and a dense annotation effort between related document pairs. To this end, we design a new annotation workflow with careful quality control and an easy-to-use annotation interface. In addition to the links, we further collect overlapping event contexts, including time, location, and participants, to shed some light on the relation between identity decisions and context. We present an open-access dataset for cross-document event coreference, CDEC-WN, collected from English Wikinews and open-source our annotation toolkit to encourage further research on cross-document tasks.
294 - Qihao Zhu , Zeyu Sun , Xiran Liang 2020
Code retrieval helps developers reuse the code snippet in the open-source projects. Given a natural language description, code retrieval aims to search for the most relevant code among a set of code. Existing state-of-the-art approaches apply neural networks to code retrieval. However, these approaches still fail to capture an important feature: overlaps. The overlaps between different names used by different people indicate that two different names may be potentially related (e.g., message and msg), and the overlaps between identifiers in code and words in natural language descriptions indicate that the code snippet and the description may potentially be related. To address these problems, we propose a novel neural architecture named OCoR, where we introduce two specifically-designed components to capture overlaps: the first embeds identifiers by character to capture the overlaps between identifiers, and the second introduces a novel overlap matrix to represent the degrees of overlaps between each natural language word and each identifier. The evaluation was conducted on two established datasets. The experimental results show that OCoR significantly outperforms the existing state-of-the-art approaches and achieves 13.1% to 22.3% improvements. Moreover, we also conducted several in-depth experiments to help understand the performance of different components in OCoR.
Acquisition of multilingual training data continues to be a challenge in word sense disambiguation (WSD). To address this problem, unsupervised approaches have been developed in recent years that automatically generate sense annotations suitable for training supervised WSD systems. We present three new methods to creating sense-annotated corpora, which leverage translations, parallel corpora, lexical resources, and contextual and synset embeddings. Our semi-supervised method applies machine translation to transfer existing sense annotations to other languages. Our two unsupervised methods use a knowledge-based WSD system to annotate a parallel corpus, and refine the resulting sense annotations by identifying lexical translations. We obtain state-of-the-art results on standard WSD benchmarks.
365 - Lei Cao , Huijun Zhang , Ling Feng 2019
Despite detection of suicidal ideation on social media has made great progress in recent years, peoples implicitly and anti-real contrarily expressed posts still remain as an obstacle, constraining the detectors to acquire higher satisfactory performance. Enlightened by the hidden tree holes phenomenon on microblog, where people at suicide risk tend to disclose their inner real feelings and thoughts to the microblog space whose authors have committed suicide, we explore the use of tree holes to enhance microblog-based suicide risk detection from the following two perspectives. (1) We build suicide-oriented word embeddings based on tree hole contents to strength the sensibility of suicide-related lexicons and context based on tree hole contents. (2) A two-layered attention mechanism is deployed to grasp intermittently changing points from individuals open blog streams, revealing ones inner emotional world more or less. Our experimental results show that with suicide-oriented word embeddings and attention, microblog-based suicide risk detection can achieve over 91% accuracy. A large-scale well-labelled suicide data set is also reported in the paper.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا