Do you want to publish a course? Click here

OCoR: An Overlapping-Aware Code Retriever

295   0   0.0 ( 0 )
 Added by Qihao Zhu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Code retrieval helps developers reuse the code snippet in the open-source projects. Given a natural language description, code retrieval aims to search for the most relevant code among a set of code. Existing state-of-the-art approaches apply neural networks to code retrieval. However, these approaches still fail to capture an important feature: overlaps. The overlaps between different names used by different people indicate that two different names may be potentially related (e.g., message and msg), and the overlaps between identifiers in code and words in natural language descriptions indicate that the code snippet and the description may potentially be related. To address these problems, we propose a novel neural architecture named OCoR, where we introduce two specifically-designed components to capture overlaps: the first embeds identifiers by character to capture the overlaps between identifiers, and the second introduces a novel overlap matrix to represent the degrees of overlaps between each natural language word and each identifier. The evaluation was conducted on two established datasets. The experimental results show that OCoR significantly outperforms the existing state-of-the-art approaches and achieves 13.1% to 22.3% improvements. Moreover, we also conducted several in-depth experiments to help understand the performance of different components in OCoR.



rate research

Read More

Comments are an integral part of software development; they are natural language descriptions associated with source code elements. Understanding explicit associations can be useful in improving code comprehensibility and maintaining the consistency between code and comments. As an initial step towards this larger goal, we address the task of associating entities in Javadoc comments with elements in Java source code. We propose an approach for automatically extracting supervised data using revision histories of open source projects and present a manually annotated evaluation dataset for this task. We develop a binary classifier and a sequence labeling model by crafting a rich feature set which encompasses various aspects of code, comments, and the relationships between them. Experiments show that our systems outperform several baselines learning from the proposed supervision.
Descriptive code comments are essential for supporting code comprehension and maintenance. We propose the task of automatically generating comments for overriding methods. We formulate a novel framework which accommodates the unique contextual and linguistic reasoning that is required for performing this task. Our approach features: (1) incorporating context from the class hierarchy; (2) conditioning on learned, latent representations of specificity to generate comments that capture the more specialized behavior of the overriding method; and (3) unlikelihood training to discourage predictions which do not conform to invariant characteristics of the comment corresponding to the overridden method. Our experiments show that the proposed approach is able to generate comments for overriding methods of higher quality compared to prevailing comment generation techniques.
Automatic generation of high-quality commit messages for code commits can substantially facilitate software developers works and coordination. However, the semantic gap between source code and natural language poses a major challenge for the task. Several studies have been proposed to alleviate the challenge but none explicitly involves code contextual information during commit message generation. Specifically, existing research adopts static embedding for code tokens, which maps a token to the same vector regardless of its context. In this paper, we propose a novel Contextualized code representation learning strategy for commit message Generation (CoreGen). CoreGen first learns contextualized code representations which exploit the contextual information behind code commit sequences. The learned representations of code commits built upon Transformer are then fine-tuned for downstream commit message generation. Experiments on the benchmark dataset demonstrate the superior effectiveness of our model over the baseline models with at least 28.18% improvement in terms of BLEU-4 score. Furthermore, we also highlight the future opportunities in training contextualized code representations on larger code corpus as a solution to low-resource tasks and adapting the contextualized code representation framework to other code-to-text generation tasks.
We formulate the novel task of automatically updating an existing natural language comment based on changes in the body of code it accompanies. We propose an approach that learns to correlate changes across two distinct language representations, to generate a sequence of edits that are applied to the existing comment to reflect the source code modifications. We train and evaluate our model using a dataset that we collected from commit histories of open-source software projects, with each example consisting of a concurrent update to a method and its corresponding comment. We compare our approach against multiple baselines using both automatic metrics and human evaluation. Results reflect the challenge of this task and that our model outperforms baselines with respect to making edits.
165 - Salvador Tamarit 2017
Obtaining good performance when programming heterogeneous computing platforms poses significant challenges. We present a program transformation environment, implemented in Haskell, where architecture-agnostic scientific C code with semantic annotations is transformed into functionally equivalent code better suited for a given platform. The transformation steps are represented as rules that can be fired when certain syntactic and semantic conditions are fulfilled. These rules are not hard-wired into the rewriting engine: they are written in a C-like language and are automatically processed and incorporated into the rewriting engine. That makes it possible for end-users to add their own rules or to provide sets of rules that are adapted to certain specific domains or purposes.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا