Do you want to publish a course? Click here

Using Action Space Clustering to Constrain the Accretion History of Milky Way like Galaxies

307   0   0.0 ( 0 )
 Added by Youjia Wu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the currently favored cosmological paradigm galaxies form hierarchically through the accretion of numerous satellite galaxies. Since the satellites are much less massive than the host halo, they occupy a small fraction of the volume in action space defined by the potential of the host halo. Since actions are conserved when the potential of the host halo changes adiabatically, stars from an accreted satellite are expected to remain clustered in action space as the host halo evolves. In this paper, we identify accreted satellites in three Milky Way like disk galaxies from the cosmological baryonic FIRE-2 simulations by tracking satellite galaxies through simulation snapshots. We then try to recover these satellites by applying the cluster analysis algorithm Enlink to the orbital actions of accreted star particles in the present-day snapshot. We define several metrics to quantify the success of the clustering algorithm and use these metrics to identify well-recovered and poorly-recovered satellites. We plot these satellites in the infall time-progenitor mass (or stellar mass) space, and determine the boundaries between the well-recovered and poorly-recovered satellites in these two spaces with classification tree method. The groups found by Enlink are more likely to correspond to a real satellite if they have high significance, a quantity assigned by Enlink. Since cosmological simulations predict that most stellar halos have a population of insitu stars, we test the ability of Enlink to recover satellites when the sample is contaminated by 10-50% of insitu star particles, and show that most of the satellites well-recovered by Enlink in the absence of insitu stars, stay well-recovered even with 50% contamination. We thus expect that, in the future, cluster analysis in action space will be useful in upcoming data sets (e.g. Gaia) for identifying accreted satellites in the Milky Way.



rate research

Read More

According to the current galaxy formation paradigm, mergers and interactions play an important role in shaping present-day galaxies. The remnants of this merger activity can be used to constrain galaxy formation models. In this work we use a sample of thirty hydrodynamical simulations of Milky Way-mass halos, from the AURIGA project, to generate surface brightness maps and search for the brightest stream in each halo as a function of varying limiting magnitude. We find that none of the models shows signatures of stellar streams at $mu_{r}^{lim} leq 25$ mag arcsec$^{-2}$. The stream detection increases significantly between 27 and 28 mag arcsec$^{-2}$. Nevertheless, even at 30 mag arcsec$^{-2}$, 13 percent of our models show no detectable streams. We study the properties of the brightest streams progenitors (BSPs). We find that BSPs are accreted within a broad range of infall times, from 1.6 to 10 Gyr ago, with only 25 percent accreted within the last 5 Gyrs; thus most BSPs correspond to relatively early accretion events. We also find that 37 percent of the BSPs survive to the present day. The median infall times for surviving and disrupted BSPs are 5.6 and 6.7 Gyr, respectively. We find a clear relation between infall time and infall mass of the BSPs, such that more massive progenitors tend to be accreted at later times. However, we find that the BSPs are not, in most cases, the dominant contributor to the accreted stellar halo of each galaxy.
99 - G. C. Myeong 2018
We analyse the structure of the local stellar halo of the Milky Way using $sim$ 60000 stars with full phase space coordinates extracted from the SDSS--{it Gaia} catalogue. We display stars in action space as a function of metallicity in a realistic axisymmetric potential for the Milky Way Galaxy. The metal-rich population is more distended towards high radial action $J_R$ as compared to azimuthal or vertical action, $J_phi$ or $J_z$. It has a mild prograde rotation $(langle v_phi rangle approx 25$ km s$^{-1}$), is radially anisotropic and highly flattened with axis ratio $q approx 0.6 - 0.7$. The metal-poor population is more evenly distributed in all three actions. It has larger prograde rotation $(langle v_phi rangle approx 50$ km s$^{-1}$), a mild radial anisotropy and a roundish morphology ($qapprox 0.9$). We identify two further components of the halo in action space. There is a high energy, retrograde component that is only present in the metal-rich stars. This is suggestive of an origin in a retrograde encounter, possibly the one that created the stripped dwarf galaxy nucleus, $omega$Centauri. Also visible as a distinct entity in action space is a resonant component, which is flattened and prograde. It extends over a range of metallicities down to [Fe/H] $approx -3$. It has a net outward radial velocity $langle v_R rangle approx 12$ km s$^{-1}$ within the Solar circle at $|z| <3.5$ kpc. The existence of resonant stars at such extremely low metallicities has not been seen before.
169 - X. H. Sun , W. Reich 2012
(Abridged) We study the polarisation properties, magnetic field strength, and synchrotron emission scale-height of Milky-Way-like galaxies in comparison with other spiral galaxies. We use our 3D-emission model of the Milky Way Galaxy for viewing the Milky Way from outside at various inclinations as spiral galaxies are observed. When seen edge-on the synchrotron emission from the Milky Way has an exponential scale-height of about 0.74 kpc, which is much smaller than the values obtained from previous models. We find that current analysis methods overestimate the scale-height of synchrotron emission of galaxies by about 10% at an inclination of 80 degree and about 40% at an inclination of 70 degree because of contamination from the disk. The observed RMs for face-on galaxies derived from high-frequency polarisation measurements approximate to the Faraday depths (FDs) when scaled by a factor of two. For edge-on galaxies, the observed RMs are indicative of the orientation of the large-scale magnetic field, but are not well related with the FDs. Assuming energy equipartition between the magnetic field and particles for the Milky Way results in an average magnetic-field strength, which is about two times larger than the intrinsic value for a K factor of 100. The number distribution of the integrated polarisation percentages of a large sample of unresolved Milky-Way-like galaxies peaks at about 4.2% at 4.8 GHz and at about 0.8% at 1.4GHz. Integrated polarisation angles rotated by 90 degree align very well with the position angles of the major axes, implying that unresolved galaxies do not have intrinsic RMs.
216 - Ryan McKinnon 2015
We introduce a dust model for cosmological simulations implemented in the moving-mesh code AREPO and present a suite of cosmological hydrodynamical zoom-in simulations to study dust formation within galactic haloes. Our model accounts for the stellar production of dust, accretion of gas-phase metals onto existing grains, destruction of dust through local supernova activity, and dust driven by winds from star-forming regions. We find that accurate stellar and active galactic nuclei feedback is needed to reproduce the observed dust-metallicity relation and that dust growth largely dominates dust destruction. Our simulations predict a dust content of the interstellar medium which is consistent with observed scaling relations at $z = 0$, including scalings between dust-to-gas ratio and metallicity, dust mass and gas mass, dust-to-gas ratio and stellar mass, and dust-to-stellar mass ratio and gas fraction. We find that roughly two-thirds of dust at $z = 0$ originated from Type II supernovae, with the contribution from asymptotic giant branch stars below 20 per cent for $z gtrsim 5$. While our suite of Milky Way-sized galaxies forms dust in good agreement with a number of key observables, it predicts a high dust-to-metal ratio in the circumgalactic medium, which motivates a more realistic treatment of thermal sputtering of grains and dust cooling channels.
Here we investigate the evolution of a Milky Way (MW) -like galaxy with the aim of predicting the properties of its progenitors all the way from $z sim 20$ to $z = 0$. We apply GAMESH (Graziani et al. 2015) to a high resolution N-Body simulation following the formation of a MW-type halo and we investigate its properties at $z sim 0$ and its progenitors in $0 < z < 4$. Our model predicts the observed galaxy main sequence, the mass-metallicity and the fundamental plane of metallicity relations in $0 < z < 4$. It also reproduces the stellar mass evolution of candidate MW progenitors in $0 lesssim z lesssim 2.5$, although the star formation rate and gas fraction of the simulated galaxies follow a shallower redshift dependence. We find that while the MW star formation and chemical enrichment are dominated by the contribution of galaxies hosted in Lyman $alpha$-cooling halos, at z > 6 the contribution of star forming mini-halos is comparable to the star formation rate along the MW merger tree. These systems might then provide an important contribution in the early phases of reionization. A large number of mini-halos with old stellar populations, possibly Population~III stars, are dragged into the MW or survive in the Local Group. At low redshift dynamical effects, such as halo mergers, tidal stripping and halo disruption redistribute the baryonic properties among halo families. These results are critically discussed in light of future improvements including a more sophisticated treatment of radiative feedback and inhomogeneous metal enrichment.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا