Do you want to publish a course? Click here

The Milky Way Halo in Action Space

100   0   0.0 ( 0 )
 Added by GyuChul Myeong
 Publication date 2018
  fields Physics
and research's language is English
 Authors G. C. Myeong




Ask ChatGPT about the research

We analyse the structure of the local stellar halo of the Milky Way using $sim$ 60000 stars with full phase space coordinates extracted from the SDSS--{it Gaia} catalogue. We display stars in action space as a function of metallicity in a realistic axisymmetric potential for the Milky Way Galaxy. The metal-rich population is more distended towards high radial action $J_R$ as compared to azimuthal or vertical action, $J_phi$ or $J_z$. It has a mild prograde rotation $(langle v_phi rangle approx 25$ km s$^{-1}$), is radially anisotropic and highly flattened with axis ratio $q approx 0.6 - 0.7$. The metal-poor population is more evenly distributed in all three actions. It has larger prograde rotation $(langle v_phi rangle approx 50$ km s$^{-1}$), a mild radial anisotropy and a roundish morphology ($qapprox 0.9$). We identify two further components of the halo in action space. There is a high energy, retrograde component that is only present in the metal-rich stars. This is suggestive of an origin in a retrograde encounter, possibly the one that created the stripped dwarf galaxy nucleus, $omega$Centauri. Also visible as a distinct entity in action space is a resonant component, which is flattened and prograde. It extends over a range of metallicities down to [Fe/H] $approx -3$. It has a net outward radial velocity $langle v_R rangle approx 12$ km s$^{-1}$ within the Solar circle at $|z| <3.5$ kpc. The existence of resonant stars at such extremely low metallicities has not been seen before.



rate research

Read More

In the currently favored cosmological paradigm galaxies form hierarchically through the accretion of numerous satellite galaxies. Since the satellites are much less massive than the host halo, they occupy a small fraction of the volume in action space defined by the potential of the host halo. Since actions are conserved when the potential of the host halo changes adiabatically, stars from an accreted satellite are expected to remain clustered in action space as the host halo evolves. In this paper, we identify accreted satellites in three Milky Way like disk galaxies from the cosmological baryonic FIRE-2 simulations by tracking satellite galaxies through simulation snapshots. We then try to recover these satellites by applying the cluster analysis algorithm Enlink to the orbital actions of accreted star particles in the present-day snapshot. We define several metrics to quantify the success of the clustering algorithm and use these metrics to identify well-recovered and poorly-recovered satellites. We plot these satellites in the infall time-progenitor mass (or stellar mass) space, and determine the boundaries between the well-recovered and poorly-recovered satellites in these two spaces with classification tree method. The groups found by Enlink are more likely to correspond to a real satellite if they have high significance, a quantity assigned by Enlink. Since cosmological simulations predict that most stellar halos have a population of insitu stars, we test the ability of Enlink to recover satellites when the sample is contaminated by 10-50% of insitu star particles, and show that most of the satellites well-recovered by Enlink in the absence of insitu stars, stay well-recovered even with 50% contamination. We thus expect that, in the future, cluster analysis in action space will be useful in upcoming data sets (e.g. Gaia) for identifying accreted satellites in the Milky Way.
135 - Warren R. Brown 2009
We present a spectroscopic sample of 910 distant halo stars from the Hypervelocity Star survey from which we derive the velocity dispersion profile of the Milky Way halo. The sample is a mix of 74% evolved horizontal branch stars and 26% blue stragglers. We estimate distances to the stars using observed colors, metallicities, and stellar evolution tracks. Our sample contains twice as many objects with R>50 kpc as previous surveys. We compute the velocity dispersion profile in two ways: with a parametric method based on a Milky Way potential model, and with a non-parametric method based on the caustic technique originally developed to measure galaxy cluster mass profiles. The resulting velocity dispersion profiles are remarkably consistent with those found by two independent surveys based on other stellar populations: the Milky Way halo exhibits a mean decline in radial velocity dispersion of -0.38+-0.12 km/s/kpc over 15<R<75 kpc. This measurement is a useful basis for calculating the total mass and mass distribution of the Milky Way halo.
We analyze the resolved stellar populations of the faint stellar system, Crater, based on deep optical imaging taken with the Hubble Space Telescope. The HST/ACS-based color-magnitude diagram (CMD) of Crater extends $sim$4 magnitudes below the oldest main sequence turnoff, providing excellent leverage on Craters physical properties. Structurally, Crater has a half-light radius of $sim$20 pc and shows no evidence for tidal distortions. Crater is well-described by a simple stellar population with an age of $sim$7.5 Gyr, [M/H]$sim-1.65$, a M$_{star}sim10^4$ M$_{odot}$, M$_{rm V}sim -5.3$, located at a distance of d$sim$ 145 kpc, with modest uncertainties in these properties due to differences in the underlying stellar evolution models. The sparse sampling of stars above the turnoff and sub-giant branch are likely to be 1.0-1.4 M$_{odot}$ binary star systems (blue stragglers) and their evolved descendants, as opposed to intermediate age main sequence stars. Confusion of these populations highlights a substantial challenge in accurately characterizing sparsely populated stellar systems. Our analysis shows that Crater is not a dwarf galaxy, but instead is an unusually young cluster given its location in the Milky Ways very outer stellar halo. Crater is similar to SMC cluster Lindsay 38, and its position and velocity are in good agreement with observations and models of the Magellanic stream debris, suggesting it may have accreted from the Magellanic Clouds. However, its age and metallicity are also in agreement with the age-metallicity relationships of lower mass dwarf galaxies such as Leo I or Carina. Despite uncertainty over its progenitor system, Crater appears to have been incorporated into the Galaxy more recently than $zsim1$ (8 Gyr ago), providing an important new constraint on the accretion history of the Milky Way. [abridged]
137 - Smita Mathur 2012
The circumgalactic region of the Milky Way contains a large amount of gaseous mass in the warm-hot phase. The presence of this warm-hot halo observed through $z=0$ X-ray absorption lines is generally agreed upon, but its density, path-length, and mass is a matter of debate. Here I discuss in detail why different investigations led to different results. The presence of an extended (over 100 kpc) and massive (over ten billion solar masses) warm-hot gaseous halo is supported by observations of other galaxies as well. I briefly discuss the assumption of constant density and end with outlining future prospects.
128 - Alis J. Deason 2019
We measure the total stellar halo luminosity using red giant branch (RGB) stars selected from Gaia data release 2. Using slices in magnitude, colour and location on the sky, we decompose RGB stars belonging to the disc and halo by fitting 2-dimensional Gaussians to the Galactic proper motion distributions. The number counts of RGB stars are converted to total stellar halo luminosity using a suite of isochrones weighted by age and metallicity, and by applying a volume correction based on the stellar halo density profile. Our method is tested and calibrated using Galaxia and N-body models. We find a total luminosity (out to 100 kpc) of L_halo = 7.9 +/- 2.0 x 10^8 L_Sun excluding Sgr, and L_halo = 9.4 +/- 2.4 x 10^8 L_Sun including Sgr. These values are appropriate for our adopted stellar halo density profile and metallicity distribution, but additional systematics related to these assumptions are quantified and discussed. Assuming a stellar mass-to-light ratio appropriate for a Kroupa initial mass function (M*/L = 1.5), we estimate a stellar halo mass of M*_halo = 1.4 +/- 0.4 x 10^9 M_Sun. This mass is larger than previous estimates in the literature, but is in good agreement with the emerging picture that the (inner) stellar halo is dominated by one massive dwarf progenitor. Finally, we argue that the combination of a ~10^9 M_Sun mass and an average metallicity of <[Fe/H]> ~ -1.5 for the Galactic halo points to an ancient (~10 Gyr) merger event.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا