Do you want to publish a course? Click here

Active Magnetoplasmonics with Transparent Conductive Oxide Nanocrystals

115   0   0.0 ( 0 )
 Added by Francesco Pineider
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetoplasmonics is highly promising to devise active optical elements: modulating the plasmon resonance condition with magnetic field can boost the performance of refractometric sensors and nanophotonic optical devices. Nevertheless, real life applications are hampered by the magnetoplasmonic trilemma: 1) a good plasmonic metal has sharp optical resonances but low magneto-optical response; 2) a magnetic metal has strong magneto-optical response but a very broad plasmonic resonance; 3) mixing the two components degrades the quality of both features. To overcome the trilemma, we use a different class of materials, transparent conductive oxide nanocrystals (NCs) with plasmonic response in the near infrared. Although non-magnetic, they combine a large cyclotron frequency (due to small electron effective mass) with sharp plasmonic resonances. We benchmark the concept with F- and In- doped CdO (FICO) and Sn-doped In2O3 (ITO) NCs to boost the magneto-optical Faraday rotation and ellipticity, reaching the highest magneto-optical response for a non-magnetic plasmonic material, and exceeding the performance of state-of-the-art ferromagnetic nanostructures. The magnetoplasmonic response of these NCs was rationalized with analytical model based on the excitation of circular magnetoplasmonic modes. Finally, proof of concept experiments demonstrated the superior performance of FICO NCs with respect to current state of the art in magnetoplasmonic refractometric sensing, approaching the sensitivity of leading localized plasmon refractometric methods with the advantage of not requiring complex curve fitting.



rate research

Read More

We present a method for low temperature plasma-activated direct wafer bonding of III-V materials to Si using a transparent, conductive indium zinc oxide interlayer. The transparent, conductive oxide (TCO) layer provides excellent optical transmission as well as electrical conduction, suggesting suitability for Si/III-V hybrid devices including Si-based tandem solar cells. For bonding temperatures ranging from 100$^{circ}$C to 350$^{circ}$C, Ohmic behavior is observed in the sample stacks, with specific contact resistivity below 1 $Omega$cm$^2$ for samples bonded at 200$^{circ}$C. Optical absorption measurements show minimal parasitic light absorption, which is limited by the III-V interlayers necessary for Ohmic contact formation to TCOs. These results are promising for Ga$_{0.5}$In$_{0.5}$P/Si tandem solar cells operating at one sun or low concentration conditions.
The use of magneto-optical techniques to tune the plasmonic response of nanostructures is a hot topic in active plasmonics, with fascinating implications for several plasmon-based applications and devices. For this emerging field, called magnetoplasmonics, plasmonic nanomaterials with strong optical response to magnetic field are desired, which is generally challenging to achieve with pure noble metals. To overcome this issue, several efforts have been carried out to design and tailor the magneto-optical response of metal nanostructures, mainly by combining plasmonic and magnetic materials in a single nanostructure. In this tutorial we focus our attention on magnetoplasmonic effects in purely plasmonic nanostructures, as they are a valuable model system allowing for an easier rationalization of magnetoplasmonic effects. The most common magneto-optical experimental methods employed to measure these effects are introduced, followed by a review of the major experimental observations that are discussed within the framework of an analytical model developed for the rationalization of magnetoplasmonic effects. Different materials are discussed, from noble metals to novel plasmonic materials, such as heavily doped semiconductors.
We report the largest broadband terahertz (THz) polarizer based on a flexible ultra-transparent cyclic olefin copolymer (COC). The COC polarizers were fabricated by nanoimprint soft lithography with the lowest reported pitch of 2 or 3 micrometers and depth of 3 micrometers and sub-wavelength Au bilayer wire grid. Fourier Transform Infrared spectroscopy in a large range of 0.9 -20 THz shows transmittance of bulk materials such as doped and undoped Si and polymers. COC polarizers present more than doubled transmission intensity and larger transmitting band when compared to Si. COC polarizers present superior performance when compared to Si polarizers, with extinctions ratios of at least 4.4 dB higher and registered performance supported by numerical simulations. Fabricated Si and COC polarizers show larger operation gap when compared to a commercial polarizer. Fabrication of these polarizers can be easily up-scaled which certainly meets functional requirements for many THz devices and applications, such as high transparency, lower cost fabrication and flexible material.
In single microdisks, embedded active emitters intrinsically affect the cavity mode of microdisks, which results in a trivial symmetric backscattering and a low controllability. Here we propose a macroscopical control of the backscattering direction by optimizing the cavity size. The signature of positive and negative backscattering directions in each single microdisk is confirmed with two strongly coupled microdisks. Furthermore, the diabolical points are achieved at the resonance of two microdisks, which agrees well with the theoretical calculations considering backscattering directions. The diabolical points in active optical structures pave a way to implement quantum information processing with geometric phase in quantum photonic networks.
98 - T. Harada , K. Fujiwara , 2018
We report on the successful synthesis of highly conductive PdCoO2 ultrathin films on Al2O3 (0001) by pulsed laser deposition. The thin films grow along the c-axis of the layered delafossite structure of PdCoO2, corresponding to the alternating stacking of conductive Pd layers and CoO2 octahedra. The thickness-dependent transport measurement reveals that each Pd layer has a homogeneous sheet conductance as high as 5.5 mS in the samples thicker than the critical thickness of 2.1 nm. Even at the critical thickness, high conductivity exceeding 104 Scm-1 is achieved. Optical transmittance spectra exhibit high optical transparency of PdCoO2 thin films particularly in the near-infrared region. The concomitant high values of electrical conductivity and optical transmittance make PdCoO2 ultrathin films as promising transparent electrodes for triangular-lattice-based materials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا