No Arabic abstract
While vector-based language representations from pretrained language models have set a new standard for many NLP tasks, there is not yet a complete accounting of their inner workings. In particular, it is not entirely clear what aspects of sentence-level syntax are captured by these representations, nor how (if at all) they are built along the stacked layers of the network. In this paper, we aim to address such questions with a general class of interventional, input perturbation-based analyses of representations from pretrained language models. Importing from computational and cognitive neuroscience the notion of representational invariance, we perform a series of probes designed to test the sensitivity of these representations to several kinds of structure in sentences. Each probe involves swapping words in a sentence and comparing the representations from perturbed sentences against the original. We experiment with three different perturbations: (1) random permutations of n-grams of varying width, to test the scale at which a representation is sensitive to word position; (2) swapping of two spans which do or do not form a syntactic phrase, to test sensitivity to global phrase structure; and (3) swapping of two adjacent words which do or do not break apart a syntactic phrase, to test sensitivity to local phrase structure. Results from these probes collectively suggest that Transformers build sensitivity to larger parts of the sentence along their layers, and that hierarchical phrase structure plays a role in this process. More broadly, our results also indicate that structured input perturbations widens the scope of analyses that can be performed on often-opaque deep learning systems, and can serve as a complement to existing tools (such as supervised linear probes) for interpreting complex black-box models.
We study the problem of multilingual masked language modeling, i.e. the training of a single model on concatenated text from multiple languages, and present a detailed study of several factors that influence why these models are so effective for cross-lingual transfer. We show, contrary to what was previously hypothesized, that transfer is possible even when there is no shared vocabulary across the monolingual corpora and also when the text comes from very different domains. The only requirement is that there are some shared parameters in the top layers of the multi-lingual encoder. To better understand this result, we also show that representations from independently trained models in different languages can be aligned post-hoc quite effectively, strongly suggesting that, much like for non-contextual word embeddings, there are universal latent symmetries in the learned embedding spaces. For multilingual masked language modeling, these symmetries seem to be automatically discovered and aligned during the joint training process.
This paper improves the robustness of the pretrained language model, BERT, against word substitution-based adversarial attacks by leveraging self-supervised contrastive learning with adversarial perturbations. One advantage of our method compared to previous works is that it is capable of improving model robustness without using any labels. Additionally, we also create an adversarial attack for word-level adversarial training on BERT. The attack is efficient, allowing adversarial training for BERT on adversarial examples generated textit{on the fly} during training. Experimental results show that our method improves the robustness of BERT against four different word substitution-based adversarial attacks. Additionally, combining our method with adversarial training gives higher robustness than adversarial training alone. Furthermore, to understand why our method can improve the model robustness against adversarial attacks, we study vector representations of clean examples and their corresponding adversarial examples before and after applying our method. As our method improves model robustness with unlabeled raw data, it opens up the possibility of using large text datasets to train robust language models.
Targeted syntactic evaluation of subject-verb number agreement in English (TSE) evaluates language models syntactic knowledge using hand-crafted minimal pairs of sentences that differ only in the main verbs conjugation. The method evaluates whether language models rate each grammatical sentence as more likely than its ungrammatical counterpart. We identify two distinct goals for TSE. First, evaluating the systematicity of a language models syntactic knowledge: given a sentence, can it conjugate arbitrary verbs correctly? Second, evaluating a models likely behavior: given a sentence, does the model concentrate its probability mass on correctly conjugated verbs, even if only on a subset of the possible verbs? We argue that current implementations of TSE do not directly capture either of these goals, and propose new metrics to capture each goal separately. Under our metrics, we find that TSE overestimates systematicity of language models, but that models score up to 40% better on verbs that they predict are likely in context.
The notion of in-domain data in NLP is often over-simplistic and vague, as textual data varies in many nuanced linguistic aspects such as topic, style or level of formality. In addition, domain labels are many times unavailable, making it challenging to build domain-specific systems. We show that massive pre-trained language models implicitly learn sentence representations that cluster by domains without supervision -- suggesting a simple data-driven definition of domains in textual data. We harness this property and propose domain data selection methods based on such models, which require only a small set of in-domain monolingual data. We evaluate our data selection methods for neural machine translation across five diverse domains, where they outperform an established approach as measured by both BLEU and by precision and recall of sentence selection with respect to an oracle.
Paraphrase generation has benefited extensively from recent progress in the designing of training objectives and model architectures. However, previous explorations have largely focused on supervised methods, which require a large amount of labeled data that is costly to collect. To address this drawback, we adopt a transfer learning approach and propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting. Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking (DB). To enforce a surface form dissimilar from the input, whenever the language model emits a token contained in the source sequence, DB prevents the model from outputting the subsequent source token for the next generation step. We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair (QQP) and the ParaNMT datasets and is robust to domain shift between the two datasets of distinct distributions. We also demonstrate that our model transfers to paraphrasing in other languages without any additional finetuning.