Do you want to publish a course? Click here

Refining Targeted Syntactic Evaluation of Language Models

343   0   0.0 ( 0 )
 Added by Benjamin Newman
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Targeted syntactic evaluation of subject-verb number agreement in English (TSE) evaluates language models syntactic knowledge using hand-crafted minimal pairs of sentences that differ only in the main verbs conjugation. The method evaluates whether language models rate each grammatical sentence as more likely than its ungrammatical counterpart. We identify two distinct goals for TSE. First, evaluating the systematicity of a language models syntactic knowledge: given a sentence, can it conjugate arbitrary verbs correctly? Second, evaluating a models likely behavior: given a sentence, does the model concentrate its probability mass on correctly conjugated verbs, even if only on a subset of the possible verbs? We argue that current implementations of TSE do not directly capture either of these goals, and propose new metrics to capture each goal separately. Under our metrics, we find that TSE overestimates systematicity of language models, but that models score up to 40% better on verbs that they predict are likely in context.

rate research

Read More

Pre-trained language models have been successful on text classification tasks, but are prone to learning spurious correlations from biased datasets, and are thus vulnerable when making inferences in a new domain. Prior works reveal such spurious patterns via post-hoc explanation algorithms which compute the importance of input features. Further, the model is regularized to align the importance scores with human knowledge, so that the unintended model behaviors are eliminated. However, such a regularization technique lacks flexibility and coverage, since only importance scores towards a pre-defined list of features are adjusted, while more complex human knowledge such as feature interaction and pattern generalization can hardly be incorporated. In this work, we propose to refine a learned language model for a target domain by collecting human-provided compositional explanations regarding observed biases. By parsing these explanations into executable logic rules, the human-specified refinement advice from a small set of explanations can be generalized to more training examples. We additionally introduce a regularization term allowing adjustments for both importance and interaction of features to better rectify model behavior. We demonstrate the effectiveness of the proposed approach on two text classification tasks by showing improved performance in target domain as well as improved model fairness after refinement.
Recent work on the interpretability of deep neural language models has concluded that many properties of natural language syntax are encoded in their representational spaces. However, such studies often suffer from limited scope by focusing on a single language and a single linguistic formalism. In this study, we aim to investigate the extent to which the semblance of syntactic structure captured by language models adheres to a surface-syntactic or deep syntactic style of analysis, and whether the patterns are consistent across different languages. We apply a probe for extracting directed dependency trees to BERT and ELMo models trained on 13 different languages, probing for two different syntactic annotation styles: Universal Dependencies (UD), prioritizing deep syntactic relations, and Surface-Syntactic Universal Dependencies (SUD), focusing on surface structure. We find that both models exhibit a preference for UD over SUD - with interesting variations across languages and layers - and that the strength of this preference is correlated with differences in tree shape.
193 - Zhiruo Wang , Renfen Hu 2020
Recent NLP tasks have benefited a lot from pre-trained language models (LM) since they are able to encode knowledge of various aspects. However, current LM evaluations focus on downstream performance, hence lack to comprehensively inspect in which aspect and to what extent have they encoded knowledge. This paper addresses both queries by proposing four tasks on syntactic, semantic, commonsense, and factual knowledge, aggregating to a total of $39,308$ questions covering both linguistic and world knowledge in Chinese. Throughout experiments, our probes and knowledge data prove to be a reliable benchmark for evaluating pre-trained Chinese LMs. Our work is publicly available at https://github.com/ZhiruoWang/ChnEval.
While vector-based language representations from pretrained language models have set a new standard for many NLP tasks, there is not yet a complete accounting of their inner workings. In particular, it is not entirely clear what aspects of sentence-level syntax are captured by these representations, nor how (if at all) they are built along the stacked layers of the network. In this paper, we aim to address such questions with a general class of interventional, input perturbation-based analyses of representations from pretrained language models. Importing from computational and cognitive neuroscience the notion of representational invariance, we perform a series of probes designed to test the sensitivity of these representations to several kinds of structure in sentences. Each probe involves swapping words in a sentence and comparing the representations from perturbed sentences against the original. We experiment with three different perturbations: (1) random permutations of n-grams of varying width, to test the scale at which a representation is sensitive to word position; (2) swapping of two spans which do or do not form a syntactic phrase, to test sensitivity to global phrase structure; and (3) swapping of two adjacent words which do or do not break apart a syntactic phrase, to test sensitivity to local phrase structure. Results from these probes collectively suggest that Transformers build sensitivity to larger parts of the sentence along their layers, and that hierarchical phrase structure plays a role in this process. More broadly, our results also indicate that structured input perturbations widens the scope of analyses that can be performed on often-opaque deep learning systems, and can serve as a complement to existing tools (such as supervised linear probes) for interpreting complex black-box models.
Humans can learn structural properties about a word from minimal experience, and deploy their learned syntactic representations uniformly in different grammatical contexts. We assess the ability of modern neural language models to reproduce this behavior in English and evaluate the effect of structural supervision on learning outcomes. First, we assess few-shot learning capabilities by developing controlled experiments that probe models syntactic nominal number and verbal argument structure generalizations for tokens seen as few as two times during training. Second, we assess invariance properties of learned representation: the ability of a model to transfer syntactic generalizations from a base context (e.g., a simple declarative active-voice sentence) to a transformed context (e.g., an interrogative sentence). We test four models trained on the same dataset: an n-gram baseline, an LSTM, and two LSTM-variants trained with explicit structural supervision (Dyer et al.,2016; Charniak et al., 2016). We find that in most cases, the neural models are able to induce the proper syntactic generalizations after minimal exposure, often from just two examples during training, and that the two structurally supervised models generalize more accurately than the LSTM model. All neural models are able to leverage information learned in base contexts to drive expectations in transformed contexts, indicating that they have learned some invariance properties of syntax.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا