No Arabic abstract
We show that given a homeomorphism $f:GrightarrowOmega$ where $G$ is a open subset of $mathbb{R}^2$ and $Omega$ is a open subset of a $2$-Ahlfors regular metric measure space supporting a weak $(1,1)$-Poincare inequality, it holds $fin BV_{operatorname{loc}}(G,Omega)$ if and only $f^{-1}in BV_{operatorname{loc}}(Omega,G)$. Further if $f$ satisfies the Luzin N and N$^{-1}$ conditions then $fin W^{1,1}_{operatorname{loc}}(G,Omega)$ if and only if $f^{-1}in W^{1,1}_{operatorname{loc}}(Omega,G)$.
We prove a compactness result for bounded sequences $(u_j)_j$ of functions with bounded variation in metric spaces $(X,d_j)$ where the space $X$ is fixed but the metric may vary with $j$. We also provide an application to Carnot-Caratheodory spaces.
Let $Gamma(E)$ be the family of all paths which meet a set $E$ in the metric measure space $X$. The set function $E mapsto AM(Gamma(E))$ defines the $AM$--modulus measure in $X$ where $AM$ refers to the approximation modulus. We compare $AM(Gamma(E))$ to the Hausdorff measure $comathcal H^1(E)$ of codimension one in $X$ and show that $$comathcal H^1(E) approx AM(Gamma(E))$$ for Suslin sets $E$ in $X$. This leads to a new characterization of sets of finite perimeter in $X$ in terms of the $AM$--modulus. We also study the level sets of $BV$ functions and show that for a.e. $t$ these sets have finite $comathcal H^1$--measure. Most of the results are new also in $mathbb R^n$.
In this note we give several characterisations of weights for two-weight Hardy inequalities to hold on general metric measure spaces possessing polar decompositions. Since there may be no differentiable structure on such spaces, the inequalities are given in the integral form in the spirit of Hardys original inequality. We give examples obtaining new weighted Hardy inequalities on $mathbb R^n$, on homogeneous groups, on hyperbolic spaces, and on Cartan-Hadamard manifolds.
Given a Sobolev homeomorphism $fin W^{2,1}$ in the plane we find a piecewise quadratic homeomorphism that approximates it up to a set of $epsilon$ measure. We show that this piecewise quadratic map can be approximated by diffeomorphisms in the $W^{2,1}$ norm on this set.
In this note we continue giving the characterisation of weights for two-weight Hardy inequalities to hold on general metric measure spaces possessing polar decompositions. Since there may be no differentiable structure on such spaces, the inequalities are given in the integral form in the spirit of Hardys original inequality. This is a continuation of our paper [M. Ruzhansky and D. Verma. Hardy inequalities on metric measure spaces, Proc. R. Soc. A., 475(2223):20180310, 2018] where we treated the case $pleq q$. Here the remaining range $p>q$ is considered, namely, $0<q<p$, $1<p<infty.$ We give examples obtaining new weighted Hardy inequalities on $mathbb R^n$, on homogeneous groups, on hyperbolic spaces, and on Cartan-Hadamard manifolds. We note that doubling conditions are not required for our analysis.