Do you want to publish a course? Click here

Hardy inequalities on metric measure spaces

218   0   0.0 ( 0 )
 Added by Michael Ruzhansky
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

In this note we give several characterisations of weights for two-weight Hardy inequalities to hold on general metric measure spaces possessing polar decompositions. Since there may be no differentiable structure on such spaces, the inequalities are given in the integral form in the spirit of Hardys original inequality. We give examples obtaining new weighted Hardy inequalities on $mathbb R^n$, on homogeneous groups, on hyperbolic spaces, and on Cartan-Hadamard manifolds.



rate research

Read More

In this note we continue giving the characterisation of weights for two-weight Hardy inequalities to hold on general metric measure spaces possessing polar decompositions. Since there may be no differentiable structure on such spaces, the inequalities are given in the integral form in the spirit of Hardys original inequality. This is a continuation of our paper [M. Ruzhansky and D. Verma. Hardy inequalities on metric measure spaces, Proc. R. Soc. A., 475(2223):20180310, 2018] where we treated the case $pleq q$. Here the remaining range $p>q$ is considered, namely, $0<q<p$, $1<p<infty.$ We give examples obtaining new weighted Hardy inequalities on $mathbb R^n$, on homogeneous groups, on hyperbolic spaces, and on Cartan-Hadamard manifolds. We note that doubling conditions are not required for our analysis.
252 - Anup Biswas , Janna Lierl 2018
We consider a general class of metric measure spaces equipped with a regular Dirichlet form and then provide a lower bound on the hitting time probabilities of the associated Hunt process. Using these estimates we establish (i) a generalization of the classical Liebs inequality on metric measure spaces and (ii) uniqueness of nonnegative super-solutions on metric measure spaces. Finally, using heat-kernel estimates we generalize the local Faber-Krahn inequality recently obtained in [LS18].
With a view towards Riemannian or sub-Riemannian manifolds, RCD metric spaces and specially fractals, this paper makes a step further in the development of a theory of heat semigroup based $(1,p)$ Sobolev spaces in the general framework of Dirichlet spaces. Under suitable assumptions that are verified in a variety of settings, the tools developed by D. Bakry, T. Coulhon, M. Ledoux and L. Saloff-Coste in the paper Sobolev inequalities in disguise allow us to obtain the whole family of Gagliardo-Nirenberg and Trudinger-Moser inequalities with optimal exponents. The latter depend not only on the Hausdorff and walk dimensions of the space but also on other invariants. In addition, we prove Morrey type inequalities and apply them to study the infimum of the exponents that ensure continuity of Sobolev functions. The results are illustrated for fractals using the Vicsek set, whereas several conjectures are made for nested fractals and the Sierpinski carpet.
In this paper, we will prove the Weyls law for the asymptotic formula of Dirichlet eigenvalues on metric measure spaces with generalized Ricci curvature bounded from below.
188 - Guozhen Lu , Qiaohua Yang 2021
This paper continues the program initiated in the works by the authors [60], [61] and [62] and by the authors with Li [51] and [52] to establish higher order Poincare-Sobolev, Hardy-Sobolev-Mazya, Adams and Hardy-Adams inequalities on real hyperbolic spaces using the method of Helgason-Fourier analysis on the hyperbolic spaces. The aim of this paper is to establish such inequalities on the Siegel domains and complex hyperbolic spaces. Firstly, we prove a factorization theorem for the operators on the complex hyperbolic space which is closely related to Geller operator, as well as the CR invariant differential operators on the Heisenberg group and CR sphere. Secondly, by using, among other things, the Kunze-Stein phenomenon on a closed linear group $SU(1,n)$ and Helgason-Fourier analysis techniques on the complex hyperbolic spaces, we establish the Poincare-Sobolev, Hardy-Sobolev-Mazya inequality on the Siegel domain $mathcal{U}^{n}$ and the unit ball $mathbb{B}_{mathbb{C}}^{n}$. Finally, we establish the sharp Hardy-Adams inequalities and sharp Adams type inequalities on Sobolev spaces of any positive fractional order on the complex hyperbolic spaces. The factorization theorem we proved is of its independent interest in the Heisenberg group and CR sphere and CR invariant differential operators therein.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا