Do you want to publish a course? Click here

Simulating MADMAX in 3D: Requirements for Dielectric Axion Haloscopes

578   0   0.0 ( 0 )
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We present 3D calculations for dielectric haloscopes such as the currently envisioned MADMAX experiment. For ideal systems with perfectly flat, parallel and isotropic dielectric disks of finite diameter, we find that a geometrical form factor reduces the emitted power by up to $30,%$ compared to earlier 1D calculations. We derive the emitted beam shape, which is important for antenna design. We show that realistic dark matter axion velocities of $10^{-3} c$ and inhomogeneities of the external magnetic field at the scale of $10,%$ have negligible impact on the sensitivity of MADMAX. We investigate design requirements for which the emitted power changes by less than $20,%$ for a benchmark boost factor with a bandwidth of $50,{rm MHz}$ at $22,{rm GHz}$, corresponding to an axion mass of $90,mu{rm eV}$. We find that the maximum allowed disk tilt is $100,mu{rm m}$ divided by the disk diameter, the required disk planarity is $20,mu{rm m}$ (min-to-max) or better, and the maximum allowed surface roughness is $100,mu{rm m}$ (min-to-max). We show how using tiled dielectric disks glued together from multiple smaller patches can affect the beam shape and antenna coupling.



rate research

Read More

We consider the design of a haloscope experiment (ORGAN) to probe for axions at 26.6 GHz. The motivation for this search is to perform the first direct test of a result which claims a possible axion signal at this frequency. There are many technical issues and optimisations that must be considered in the design of a high mass axion haloscope. We discuss the current status of the ORGAN experiment, as well as its future. We also discuss low mass axion haloscopes employing lumped 3D LC resonators.
We propose a new strategy to search for dark matter axions using tunable cryogenic plasmas. Unlike current experiments, which repair the mismatch between axion and photon masses by breaking translational invariance (cavity and dielectric haloscopes), a plasma haloscope enables resonant conversion by matching the axion mass to a plasma frequency. A key advantage is that the plasma frequency is unrelated to the physical size of the device, allowing large conversion volumes. We identify wire metamaterials as a promising candidate plasma, wherein the plasma frequency can be tuned by varying the interwire spacing. For realistic experimental sizes we estimate competitive sensitivity for axion masses $35-400,mu$eV, at least.
We study the underlying theory of dielectric haloscopes, a new way to detect dark matter axions. When an interface between different dielectric media is inside a magnetic field, the oscillating axion field acts as a source of electromagnetic waves, which emerge in both directions perpendicular to the surface. The emission rate can be boosted by multiple layers judiciously placed to achieve constructive interference and by a large transverse area. Starting from the axion-modified Maxwell equations, we calculate the efficiency of this new dielectric haloscope approach. This technique could potentially search the unexplored high-frequency range of 10--100 GHz (axion mass 40--400 $mu$eV), where traditional cavity resonators have difficulties reaching the required volume.
A well-motivated class of dark matter candidates, including axions and dark photons, takes the form of coherent oscillations of a light bosonic field. If the dark matter couples to Standard Model states, it may be possible to detect it via absorptions in a laboratory target. Current experiments of this kind include cavity-based resonators that convert bosonic dark matter to electromagnetic fields, operating at microwave frequencies. We propose a new class of detectors at higher frequencies, from the infrared through the ultraviolet, based on the dielectric haloscope concept. In periodic photonic materials, bosonic dark matter can efficiently convert to detectable single photons. With feasible experimental techniques, these detectors can probe significant new parameter space for axion and dark photon dark matter in the 0.1-10 eV mass range.
RADES (Relic Axion Detector Exploratory Setup) is a project with the goal of directly searching for axion dark matter above the $30 mu$eV scale employing custom-made microwave filters in magnetic dipole fields. Currently RADES is taking data at the LHC dipole of the CAST experiment. In the long term, the RADES cavities are envisioned to take data in the (baby)-IAXO magnet. In this article we report on the modelling, building and characterisation of an optimised microwave-filter design with alternating irises that exploits maximal coupling to axions while being scalable in length without suffering from mode-mixing. We develop the mathematical formalism and theoretical study which justifies the performance of the chosen design. We also point towards the applicability of this formalism to optimise the MADMAX dielectric haloscopes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا