Do you want to publish a course? Click here

Axion and hidden photon dark matter detection with multilayer optical haloscopes

98   0   0.0 ( 0 )
 Added by Junwu Huang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

A well-motivated class of dark matter candidates, including axions and dark photons, takes the form of coherent oscillations of a light bosonic field. If the dark matter couples to Standard Model states, it may be possible to detect it via absorptions in a laboratory target. Current experiments of this kind include cavity-based resonators that convert bosonic dark matter to electromagnetic fields, operating at microwave frequencies. We propose a new class of detectors at higher frequencies, from the infrared through the ultraviolet, based on the dielectric haloscope concept. In periodic photonic materials, bosonic dark matter can efficiently convert to detectable single photons. With feasible experimental techniques, these detectors can probe significant new parameter space for axion and dark photon dark matter in the 0.1-10 eV mass range.



rate research

Read More

The QCD axion or axion-like particles are candidates of dark matter of the universe. On the other hand, axion-like excitations exist in certain condensed matter systems, which implies that there can be interactions of dark matter particles with condensed matter axions. We discuss the relationship between the condensed matter axion and a collective spin-wave excitation in an anti-ferromagnetic insulator at the quantum level. The conversion rate of the light dark matter, such as the elementary particle axion or hidden photon, into the condensed matter axion is estimated for the discovery of the dark matter signals.
We propose a new strategy to search for dark matter axions using tunable cryogenic plasmas. Unlike current experiments, which repair the mismatch between axion and photon masses by breaking translational invariance (cavity and dielectric haloscopes), a plasma haloscope enables resonant conversion by matching the axion mass to a plasma frequency. A key advantage is that the plasma frequency is unrelated to the physical size of the device, allowing large conversion volumes. We identify wire metamaterials as a promising candidate plasma, wherein the plasma frequency can be tuned by varying the interwire spacing. For realistic experimental sizes we estimate competitive sensitivity for axion masses $35-400,mu$eV, at least.
We investigate a scenario where the dark matter of the Universe is made from very light hidden photons transforming under a $Z_{2}$-symmetry. In contrast to the usual situation, kinetic mixing is forbidden by the symmetry and the dark photon interacts with the Standard Model photon only via an axion-like particle acting as a messenger. Focusing on signatures involving the ordinary photon, our survey of the phenomenology includes limits from cosmological stability, CMB distortions, astrophysical energy loss, light-shining-through-walls experiments, helioscopes and solar X-ray observations.
86 - N. Du , N. Force , R. Khatiwada 2018
This Letter reports results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 $mu$eV. The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sensitivity is achieved by operating a large-volume haloscope at sub-kelvin temperatures, thereby reducing thermal noise as well as the excess noise from the ultra-low-noise SQUID amplifier used for the signal power readout. Ongoing searches will provide nearly definitive tests of the invisible axion model over a wide range of axion masses.
Axion-like particles are a broad class of dark matter candidates which are expected to behave as a coherent, classical field with a weak coupling to photons. Research into the detectability of these particles with laser interferometers has recently revealed a number of promising experimental designs. Inspired by these ideas, we propose the Axion Detection with Birefringent Cavities (ADBC) experiment, a new axion interferometry concept using a cavity that exhibits birefringence between its two, linearly polarized laser eigenmodes. This experimental concept overcomes several limitations of the designs currently in the literature, and can be practically realized in the form of a simple bowtie cavity with tunable mirror angles. Our design thereby increases the sensitivity to the axion-photon coupling over a wide range of axion masses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا